
박 사 학 위 논 문

Doctoral Thesis

손실이 있는 인터페이스 어댑터

체인의 수학적 분석

Formal Analysis Framework

for Lossy Interface Adapter Chaining

정 유철 (鄭 有喆 Chung, Yoo Chul)

전산학과

Department of Computer Science

KAIST

2010

손실이 있는 인터페이스 어댑터

체인의 수학적 분석

Formal Analysis Framework

for Lossy Interface Adapter Chaining

Formal Analysis Framework

for Lossy Interface Adapter Chaining

Advisor : Professor Dongman Lee

by

Chung, Yoo Chul

Department of Computer Science

KAIST

A thesis submitted to the faculty of the KAIST in partial ful-

fillment of the requirements for the degree of Doctor of Philosophy

in the Department of Computer Science

Daejeon, Korea

2009. 11. 04.

Approved by

Professor Dongman Lee

Advisor

손실이 있는 인터페이스 어댑터

체인의 수학적 분석

정 유철

위 논문은 한국과학기술원 박사학위논문으로 학위논문심사 위

원회에서 심사 통과하였음.

2009년 11월 24일

심사위원장 이동만 (인)

심사위원 이영희 (인)

심사위원 현순주 (인)

심사위원 고인영 (인)

심사위원 김명준 (인)

DCS

20055182

정 유철. Chung, Yoo Chul. Formal Analysis Framework for Lossy

Interface Adapter Chaining. 손실이 있는 인터페이스 어댑터 체인

의 수학적 분석. Department of Computer Science. 2010. 112p.

Advisor Prof. Dongman Lee. Text in English.

Abstract

In an ideal ubiquitous computing environment, computing services would

be embedded in physical objects all around us, which would all work together

seamlessly. As computing could be embedded in all sorts of physical objects,

a myriad of different interfaces could arise for different computing services

with similar functionality. However, software in ubiquitous computing envi-

ronments must still be able to access computing services in the environment

even when the desired service has an unfamiliar interface, otherwise this will be

an obstacle to the seamless operation of a ubiquitous computing environment.

Interface adapters can provide a solution to this problem by transforming

interfaces as necessary. And chaining them together enables much more flex-

ibility without incurring a prohibitive development cost in creating all of the

required interface adapters for direct interface adaptation. Unfortunately, an

interface adapter is likely to be imperfect, so interface adaptation would often

incur adaptation loss. This is even more of an issue when interface adapters

are chained. To properly consider loss in the construction of interface adapter

chains, a mathematical framework is required to analyze such chains.

We develop a number of mathematical frameworks to analyze the loss in

interface adapter chaining, each building upon another. For each mathematical

framework, we define algebraic objects and operations that express the loss and

how it is affected by each interface adapter. These in turn are used to develop

algorithms and prove complexity results for problems relevant to lossy interface

adapter chaining.

i

Contents

Abstract . i

Contents . iii

List of Tables . vi

List of Figures . vii

List of Algorithms . viii

1 Introduction 1

1.1 Terminology . 3

1.2 Motivation . 4

1.3 Contributions . 9

1.4 Organization . 11

2 Related work 12

2.1 Generating adapters . 12

2.1.1 Putilo and Atlee . 12

2.1.2 Reussner . 13

2.1.3 Benatallah et al. 13

2.1.4 Dumas et al. 14

2.1.5 Motahari Nezhad et al. 14

2.1.6 Kongdenfha et al. 15

2.2 Formalizing interface adaptation 15

2.2.1 Yellin and Strom . 16

2.2.2 Spitznagel and Garlan 16

2.2.3 Bracciali et al. 17

2.2.4 Poizat et al. 17

iii

2.3 Combining adapters . 18

2.3.1 Keller and Hölzle . 18

2.3.2 Hallberg . 19

2.3.3 Kaminski et al. 19

2.3.4 Vayssiére . 20

2.3.5 Gschwind . 20

2.3.6 Ponnekanti and Fox . 21

2.3.7 Kim et al. 21

3 Discrete chains 23

3.1 Mathematical basics . 23

3.1.1 Method dependencies . 24

3.1.2 Adapter composition . 26

3.1.3 An example . 29

3.2 Optimal adapter chaining . 31

3.2.1 Representing values . 32

3.2.2 Handling literals . 33

3.2.3 Handling clauses . 35

3.2.4 Filtering . 36

3.2.5 Analysis of the reduction 37

3.3 A greedy algorithm . 37

4 Probabilistic chains 43

4.1 Mathematical basics . 43

4.1.1 Method dependencies . 44

4.1.2 Adapter composition . 49

4.1.3 An example . 53

4.2 Optimal adapter chaining . 56

4.3 A greedy algorithm . 58

iv

5 Abstract interpretation 62

5.1 Mathematical basics . 62

5.1.1 Method dependencies . 63

5.1.2 Adapter composition . 65

5.1.3 An example . 66

5.2 Complexity . 69

5.3 A greedy algorithm . 70

6 Web of interface adapters 73

6.1 Mathematical basics . 73

6.2 Web of lossy adapters . 74

6.3 An example . 79

6.4 Minimizing number of adapters 81

7 Discussion 83

7.1 A case study . 86

8 Conclusions 97

Summary (in Korean) 101

v

List of Tables

1.1 Interface adapters for figure 1.2. 7

4.1 Probabilistic events. 44

4.2 Example conversion probabilities for figure 1.2. 55

5.1 Example abstract argument domains for figure 1.2. 67

5.2 Elements in an example abstract dependency function. 68

7.1 Comparison of mathematical frameworks. 86

vi

List of Figures

1.1 Example of service interface adaptation. 5

1.2 Multiple interfaces related by interface adapters. 6

1.3 Method dependencies for the interface adapters in figure 1.2. . . 8

1.4 Roadmap of frameworks for analyzing lossy interface chaining. . 9

3.1 Interface adapter graph for figure 1.2. 30

3.2 Boolean expression reduced to an interface adapter graph. . . . 32

3.3 Choosing a variable assignment. 34

3.4 Disjunction through alternate paths. 36

6.1 An example interface adapter graph. 79

7.1 Example interface adapter graph with payment interfaces. . . . 87

7.2 Example code snippet for interface adapter. 88

7.3 Example of loss analysis with discrete approach. 90

7.4 Example of loss analysis with probabilistic approach. 92

7.5 Example of loss analysis with abstract interpretation approach. . 94

7.6 Web of interface adapters for figure 7.1. 96

vii

List of Algorithms

1 A greedy algorithm for interface adapter chaining. 39

2 Computing the loss of an interface adapter chain. 40

3 Greedy discovery for weighted interface adapter chaining. 41

4 Computing the weight of an interface adapter chain. 42

5 A probabilistic greedy algorithm for interface adapter chaining. . 60

6 Computing the probabilistic loss of an interface adapter chain. . 61

7 Adapter chaining algorithm with abstract interpretation. 71

8 Computing number of accepted abstract values. 72

9 Constructing maximally covering web of interface adapters. . . . 75

10 Setup for constructing maximal covering. 76

11 Extract subgraph comprising web of interface adapters. 77

12 Adapting a specific method in the target interface. 78

viii

1. Introduction

In an ideal ubiquitous computing environment, computing services would be

embedded in physical objects and the physical environment all around us,

which would all work together seamlessly to provide better service from the

physical world and intuitive access to the online world [21, 35, 40, 60, 67, 74].

Among other things, this implies that all sorts of physical objects should embed

computing capability for using the object itself and to let other computing

services use the object whenever this is deemed best for the user.

For seamless operation, a wide variety of computing services embedded in

a diverse set of physical objects must be able to work with each other. How-

ever, unless the day comes when a single regulatory body can mandate the

static standardization of all computing services, a realistic environment will

always include computing services from diverse manufacturers based on mul-

tiple standards, internal and external [13, 25, 65, 72]. This in turn results in a

myriad of different interfaces being created for services with similar function-

ality. Thus computing services in ubiquitous computing environments must be

able to work with other computing services with different interfaces than may

have been known when the services are developed.

The obvious way to solve this sort of problem is to rigorously standardize

service types and their interfaces. However, even creating a draft standard of

a well-established service such as printing can take over 15 months [59]: stan-

dardization of new kinds of services with less widespread deployment can take

even longer, or even not at all, and it can be expected that many such services

will arise in ubiquitous computing environments. Until such standardization

occurs, a service must still be able to interoperate seamlessly with other ser-

vices. Even with standardization, standards can change over time, and unless

1

all services in every physical object is updated accordingly, services would still

end up being loosely coupled.

In order to access a different interface than a client was written for with-

out rewriting the client, interface adapters could be used to convert invoca-

tions in one interface to another [4, 16, 22, 52, 54, 56, 58, 77]. However, it is

unlikely that interface adaptation can be done perfectly, since interfaces are

usually developed independently of each other with no regard for compatibil-

ity. Adaptation loss will usually result as certain methods cannot be adapted

by the interface adapter, and the problem is only worse when adapters are

chained [26, 27, 31, 34, 55, 71]. Even analyzing how much loss results from

an interface adapter chain is not a trivial problem that can be modeled as a

shortest path problem.

In ubiquitous computing environments, it is especially important that the

loss during interface adaptation be considered since it cannot be waived on

demand. Much of the existing work on interface adaptation focuses on the de-

velopment of entire software systems which integrate existing software compo-

nents [5, 16, 37, 54, 56, 58], and there is an expectation that perfect adaptation

can be achieved at least in principle. This is not an expectation that can carry

over to ubiquitous computing environments. For one thing, perfect adaptation

may be fundamentally impossible for a service that represents hardware, e.g.

there would be no way for a speaker to play back pure video. Another issue

is that interface adapters be cannot created or modified on demand since a

developer must manually intervene, which is not an issue for the development

of static software systems.

In order to analyze the adaptation loss incurred by interface adapter chains

and to develop algorithms which can construct them, a theoretical framework

is required which can express and analyze lossy interface adapter chaining.

However, no previous work has studied how to rigorously analyze the loss in

interface adapter chains, so either lossy interface adapters were impossible to

2

use, or it was impossible to properly evaluate how much loss may be incurred

when chaining lossy interface adapters.

We develop an algebraic framework that analyzes loss in interface adapter

chaining, where the concepts and algebraic operations for expressing and ana-

lyzing lossy dependencies are defined. This framework should provide the basic

mathematical building blocks necessary when creating algorithms for lossy in-

terface adaptation. In fact, several such frameworks will be created, simpler

ones being the bases for more complex ones but each still being potentially

useful for particular application domains. We will also develop several algo-

rithms and prove the computational complexity for several problems related

to lossy interface adapter chaining.

1.1 Terminology

A service is a concrete entity which performs tasks for external entities. Similar

concepts include components and distributed objects.

An interface specifies the set of methods that a service provides. Software

that knows how to use a specific interface should be able to use any service

that conforms to this interface. Similar concepts include classes and protocols.

A method is the basic unit of communication by which external entities

can request a service to perform a specific task. Similar terms and concepts

include operation, function, procedure, and message.

An interface adapter converts a source interface to a target interface. It

allows the use of a service that conforms to the source interface by software

written to use the target interface.

When we mention loss in relation to interface adaptation, this means that

one or more methods specified in an interface cannot be used. There should

be no loss when a directly accessing a service, but loss may be inevitable when

it must be accessed using a different interface through interface adaptation.

3

1.2 Motivation

In this dissertation, we take the approach that services which provide similar

functionality can be accessed through different interfaces than that provided

by the service itself through the use of pre-existing interface adapters. Each

interface is accessed through methods, and an interface adapter can provide

an alternative interface by implementing external methods using the methods

available in the original interface.

There can be various approaches to creating the interface adapters them-

selves, from manual development of an adapter to semi-automatic generation

through semantic or code analysis. While manual development of interface

adapters is probably the most reliable method, the mathematical frameworks

described in this dissertation does not preclude the use of alternative meth-

ods [4, 32, 37, 52, 54, 77], and the generation of interface adapters themselves is

outside the scope of this dissertation, as our mathematical framework assumes

a fixed set of interfaces and pre-existing interface adapters.

As a concrete example, we will describe how the web service XWebCheck-

Out could be accessed using the Google Checkout API, an example we base

on one from [52]. In figure 1.1, we can see how XWebCheckOut has a different

interface from that of Google Checkout. For a network client that only knows

how to use the Google Checkout API, it would need an adapter which can

convert the source interface for XWebCheckOut to the target interface for

Google Checkout.

A developer could implement methods for the Google Checkout interface

by using methods available in the XWebCheckOut interface. For example,

the Place-Order method in the Google Checkout interface could be imple-

mented using the AddOrder and UpdateOrder methods in the XWeb-

CheckOut interface. Doing this for each method in the Google Checkout in-

terface will result in an interface adapter that adapts the XWebCheckOut

interface to the Google Checkout interface.

4

XWebCheckOut

LoadOrder

AddOrder

UpdateOrder

DeleteOrder

ProcessPayment

Google Checkout

Place-Order

...

Cancel-Order

Charge-Order
New-Order-
Notification

Figure 1.1: Example of service interface adaptation.

However, interface adaptation might not be perfect as some methods in

the target interface simply cannot be implemented using only methods in the

source interface, resulting in lossy interface adaptation. We can see this in

figure 1.1, where there is no feasible way to implement the New-Order-

Notification method using only methods available from the XWebCheckOut

interface, assuming that the method cannot be implemented independently of

XWebCheckOut.

Since a network client is using the target interface to access a service, the

loss in the target interface is of more interest than the inability to provide access

to the full range of functionality provided in the source interface. For example,

with a network client that only knows how to use the Google Checkout API, it

is more relevant that an interface adapter may not be able to provide the New-

Order-Notification method in the Google Checkout interface, rather than

that the functionality provided by the LoadOrder method in the XWeb-

CheckOut interface is missing.

If we require that all available interfaces for similar services must be adapted

between each other with only a single adapter in between, then the number of

interface adapters required is in the order of n2. Developing all the required

adapters can be impractical, so interface adapters can be chained to adapt a

source interface to one interface, this interface adapted to another interface,

and so on until we get a target interface that a network client knows how to

5

playVideo
playAudio

Video1

play
stop
skip
caption

Video2

play
getVolume
setVolume
setEqualizer

Video3

play
adjustAudio

Audio

Figure 1.2: Multiple interfaces related by interface adapters.

use [26, 34, 55, 71]. In the best case, we can even get away with only n adapters

given n interfaces.

However, different chains of interface adapters result in different loss from

the interface adaptation, so we need a way to analyze the chaining of lossy

interface adapters. We will look at another example in figure 1.2, where there

are four interfaces and six interface adapters, each of the latter represented by

an arrow from the source interface to the target interface it converts from and

to.

Each interface may have the following characteristics:

• Video1 can play both video and audio files.

• Video2 can only play video files, but can stop playback, skip over a fixed

amount of time, and select captions.

• Video3 can only play video files, but can get and set the volume and set

the equalizer for the audio output.

6

Adapter Target Source Implements Using

Video1toVideo2 Video2 Video1 play playVideo

Video2toVideo3 Video3 Video2 play play

Video1toAudio Audio Video1 play playAudio

AudiotoVideo3 Video3 Audio
setVolume adjustAudio

setEqualizer adjustAudio

Video3toAudio Audio Video3 adjustAudio
setVolume

setEqualizer

Video3toVideo1 Video1 Video3 playVideo play

Table 1.1: Interface adapters for figure 1.2.

• Audio can only play video files, but can set audio properties, which are

the volume and the equalizer.

Each interface adapter may be implemented as in table 1.1, which specifies

the methods in the source interface used to implement methods in the tar-

get interface.1 Methods in a target interface not mentioned are not adapted

to. Figure 1.3 graphically shows the methods in a source interface that the

interface adapters use to implement methods in a target interface.

A service with interface Video1 may be available, and we may want to

access it using a client that only understands interface Video3. There is no

interface adapter which directly converts interface Video1 to Video3, but there

are interface adapter chains which can indirectly do the conversion. Chaining

Video1toVideo2 with Video2toVideo3 or chaining Video1toAudio with Audio-

toVideo3 can convert interface Video1 to Video3.

Given multiple possible interface adapter chains, we would want to use the

1While it may seem odd to have an adapter AudiotoVideo3 from Audio to Video3 which

cannot adapt a playback method, it can still be useful when someone wishes to reduce

loud noises from an audio device with interface Audio using a remote control that only

understands the interface Video3.

7

Audio

play
adjustAudio

Video1

playVideo
playAudio

Video2

play
stop
skip

caption

Video3

play
getVolume
setVolume
setEqualizer

Figure 1.3: Method dependencies for the interface adapters in figure 1.2.

best interface adapter chain that can provide the most methods in the target

interface. Associating a cost with an adapter depending on how well it adapts

the methods in its target interface and using minimum-cost path algorithms

such as Dijkstra’s algorithm [14] would be an obvious approach to choose the

best interface adapter chain. However, this naive approach would not work as

we will see from the example in figure 1.2.

Video1toAudio and AudiotoVideo3 can adapt one out of two methods in

Audio and Video3, respectively. In contrast, Video1toVideo2 and Video2to-

Video3 can adapt one out of four methods in Video2 and Video3. One might

think that the Video1toAudio and AudiotoVideo3 chain would be better than

the Video1toVideo2 and Video2toVideo3 chain simply by looking at how lossy

each interface adapter is, but one would be wrong.

AudiotoVideo3 requires the adjustAudio method in Audio to implement

the setVolume and setEqualizer methods in Video3. However, Video1toAudio

cannot implement the adjustAudio method in Audio, so the Video1toAudio and

AudiotoVideo3 chain ends up with no available methods for Video3. In con-

trast, the Video1toVideo2 and Video2toVideo3 chain can provide the method

play for Video3. A single number for each interface adapter cannot express

8

probabilistic
(chapter 4)

abstract interpretation
(chapter 5)

discrete chaining
(chapter 3)

web of adapters
(chapter 6)

Figure 1.4: Roadmap of frameworks for analyzing lossy interface chaining.

such dependencies properly, so we need a more precise approach to analyze

the loss in interface adapter chains.

In the rest of this dissertation, we will discuss how to mathematically an-

alyze the loss incurred from the chaining of interface adapters. We will also

assume that interface adapters are implemented as transparently as possible:

while an interface adapter may not be able to provide all of the methods in

the target interface, the methods it will provide will work just as if they were

invoked directly on a service having the target interface.

1.3 Contributions

Analyzing the loss during interface adapter chaining is not as simple as re-

ducing the interfaces and adapters to a weighted graph and then finding the

shortest path [14, 18, 29], which is why a rigorous mathematical framework

is required. Multiple mathematical frameworks are developed, each building

upon another. This is not only so that a complex mathematical framework

can be built upon a simpler and easier to understand framework, but it is also

the case that each framework can be practical by themselves depending on the

system architecture and available resources. This section briefly explains each

9

framework, which comprise the contributions of this dissertation, and how they

will be built upon each other as in figure 1.4.

There are some common results that are expected from each framework.

One is a set of rigorous mathematical definitions and operations that form

the framework itself. These will be used to express loss incurred by interface

adapters. The mathematical operations allow these to be analyzed in an al-

gebraic manner, which can be used to compute how well interface adaptation

can be done. Another result that is expected from each framework are either

polynomial-time algorithms for solving relevant problems or proofs of the com-

putational complexity of these problems. Such problems include finding the

optimal combination of interface adapters or how to use them during actual

operation, e.g. which methods with which interface adapters should be invoked

during interface adaptation.

The basic framework described in chapter 3, upon which the others are

built, analyzes boolean dependencies for single interface adapter chains, i.e.

each individual method dependency is assumed to be completely fulfilled or

completely missing. This is applicable when interface adapters are singly linked

together during interface adaptation with no partial dependencies to worry

about. Based on this basic framework, there are two paths for building more

complex frameworks.

One path is to refine the analysis of individual method dependencies by

allowing that they need not be complete. This allows cases where not all ar-

guments given to a method can be handled due to interface adaptation. This

inspires two other approaches, a probabilistic approach [20, 28, 46, 76] and

another based on abstract interpretation [3, 9, 10, 66]. The probabilistic ap-

proach described in chapter 4 would be appropriate when the individual partial

dependencies are fuzzy, whereas the approach based on abstract interpretation

as described in chapter 5 would be appropriate when the partial dependency

can be decomposed into sharp abstract domains, i.e. arguments can be divided

10

into unambiguous abstract domains.

The other path is to handle a combination of method dependencies which

form a directed acyclic graph as described in chapter 6. This is a case where

interface adapters are not just combined into a single chain, but rather in which

they can be combined as a directed acyclic graph. This allows an interface

adaptation system to adapt an interface with the least loss possible without

having to choose between interface adapter chains with different losses.

1.4 Organization

The remainder of this dissertation is organized as follows. In chapter 2, we

review related work on interface adaptation. Subsequent chapters contain

the main work of this dissertation, where chapter 3 describes the most basic

framework based on a discrete approach, chapter 4 describes a probabilistic

framework, chapter 5 describes a framework based on abstract interpretation,

and chapter 6 describes a DAG-based framework. In chapter 7, we discuss the

pros and cons of each of these theoretical frameworks and other issues relevant

to applying them to a real interface adaptation system. Chapter 8 concludes

this dissertation.

11

2. Related work

The idea of using interface adapters is a well-known idea that has even been

described as a notable design pattern [22]. While some work attempt to avoid

the need for interface adaptation altogether by using language constructs that

enable a certain amount of leeway in interface changes [5, 41], there is a limit

to how much change such approaches can tolerate. Using interface adapters,

on the other hand, does not have this limitation. We survey work related to

interface adaptation in this chapter.

2.1 Generating adapters

This section surveys related work on generating interface adapters. It should be

noted that all of them require significant human effort, even if some provide

tools to identify certain problems, or specification languages that are much

easier to use compared to coding an interface adapter directly in a general-

purpose programming language.

2.1.1 Putilo and Atlee

Putilo and Atlee [56] describes a language called Nimble that allows developers

to declare how the parameters to a procedure call can be transformed at run-

time, which allows a procedure to evolve without having to modify callee code.

It uses a simple pattern-based language to specify how the actual parameters

that a procedure receives should be transformed. While it is focused on rear-

ranging or restructuring the parameters, it also has a limited ability to specify

algebraic operations such as addition or multiplication on the parameters. It

12

has no support for renaming procedures, however.

A mapping specification written in Nimble is translated into another lan-

guage which specifies the exact steps in transforming the parameters, which in

turn is used by a compiler specific to the programming language and execution

environment to create actual executable code for the interface adapter. The

linker is modified so that the adapter is called instead of the procedure, and the

adapter will invoke the procedure instead after it transforms the parameters.

2.1.2 Reussner

Reussner [58] uses parameterized contracts, which is a generalization of clas-

sical contracts [48], to adjust the protocol of a component to match what is

expected by its environment. Having pre-conditions and post-conditions set to

requires-interfaces and provides-interfaces, it parameterizes the pre-condition

with the post-condition of the component and vice versa. The contracts are

analyzed using finite state machines to check compatibility and construct new

contracts to adapt to a new execution environment.

They created the CoConut/J tool suite to implement their adaptation sys-

tem. It can use specifications written as message sequence charts to specify

contracts when code for a component is not yet available, or it can use anno-

tations in the code itself to specify contracts. Their system does not handle

signature mismatches where message names or parameters might be different

from what is expected.

2.1.3 Benatallah et al.

Benatallah et al. [4] categorizes common mismatch patterns for web service

interfaces. Based on these common mismatch patterns, they suggest various

code templates that can be instantiated based on developer-provided param-

eters that can form part of an interface adapter. Categorizing mismatch pat-

13

terns makes it easier to identify incompatibilities between interfaces, which the

provided templates can then be used to significantly reduce the effort required

to develop an interface adapter. A developer must identify the mismatches

and fill in the missing details not covered by the templates, however.

Common mismatch patterns are divided between those on the operational

level and on the protocol level. Mismatches on the operational level are dif-

ferences in operation names, parameter types, or return types, which basically

form the signature of an operation. Mismatches on the protocol level are differ-

ences in expected behavior such as message ordering mismatch, extra message

mismatch, missing message mismatch, etc.

2.1.4 Dumas et al.

Dumas et al. [16] proposes the use of visual elements to construct interface

adapters. The visual elements connect two interfaces that are specified as

a flowchart, and they specify adaptive behavior such as message transforms

or message aggregation, although there is no support for message reordering.

Each visual element is mapped to an operator in an interface transformation

algebra so that their behaviors are formally defined.

They provide an interface mapping tool to graphically edit how interfaces

should be transformed into other interfaces. The output of the interface map-

ping tool is used by a service mediation engine which maps the output to a

finite state machine and uses this to adapt an interface to another.

2.1.5 Motahari Nezhad et al.

Motahari Nezhad et al. [52] categorizes common mismatch patterns for web

service interfaces and provides tools for identifying them. Interface-level mis-

matches are identified by attempting to match messages by name and type and

then identifying mismatches in the signatures. Message matching is done by

14

exactly matching a name, but it can also be done by matching the structures

of the interfaces that are specified with XML schemas [57]. A developer needs

to match messages that have not been matched, unmatch those that have been

mistakenly identified, and fix mismatch details incorrectly inferred.

Once interface-level matches are identified, they identify protocol-level mis-

matches by roughly simulating the adapter. A mismatch tree is constructed

where children mark the next state of a protocol interaction, with alternate

children representing alternate interactions. The mismatch tree is used to iden-

tify possible deadlocks and ways to avoid them, supported by interface-based

inference, log-based inference, and developer input.

They implemented their approach inside IBM WID, which is an Eclipse-

based IDE for development of composite applications based on SCA [64]. They

included a mismatch tree editor and interface mapping editor to allow devel-

opers to inspect and modify the matchings and mismatches identified.

2.1.6 Kongdenfha et al.

Kongdenfha et al. [37] uses aspect-oriented programming [33] to extend the

work of Benatallah et al. [4]. They also use mismatch patterns to identify

mismatches, and templates are provided to reduce the development effort for

constructing adapters. But instead of only generating standalone adapters,

they also support aspect-oriented adapters that extend the service itself instead

of running separately. They extend a BPEL engine with an aspect manager,

which can insert adaptation aspects into running web services as needed.

2.2 Formalizing interface adaptation

This section surveys related work on formalizing interface adaptation. None of

the work mentioned in this section allow for loss during interface adaptation.

Without loss to consider, signature mismatches are trivial for humans to solve

15

but too hard for computers to even identify, so much of the focus on formalizing

interface adaptation has been on the behavior of interfaces.

2.2.1 Yellin and Strom

Yellin and Strom [77] describe a formal approach to specifying a protocol

for an interface, which explicitly specify the message order as required by

the interface. The protocol specification defines a finite-state machine, where

messages form the edges. They use this as the basis to analyze whether two

interacting components have behavioral problems such as messages arriving out

of sequence or a deadlock, i.e. checking whether two interacting components

have protocol compatibility.

They also provide a way to bind two incompatible software components

together using adapters. An adapter is modeled as a finite-state machine which

specifies how messages are transformed. The correctness of the adapter can

then be verified by analyzing the adapter specification along with the protocol

specifications of the two interacting components. An adapter specification

can be difficult to write, however, so interface mappings can be written to

specify how two interfaces map to each other. They provide an algorithm to

either convert an interface mapping into an adapter specification that satisfies

protocol compatibility with the interacting components, or to conclude that

no such adapter can exist.

2.2.2 Spitznagel and Garlan

Spitznagel and Garlan [68] describe a formal approach to specifying the proto-

col of an adapter using FSP [45]. The protocol of a base connection between

software components is specified at a high level in FSP, and the behavior of

the whole system when an adapter is applied to the base connection can be

derived by combining the specifications. The use of FSP to specify protocols

16

allows tools to analyze whether a component behaves as expected when an

adapter is applied, and they show examples of this with adapters that add

retry or failover behavior. Their approach allows adapter specifications for or-

thogonal functionality to be composed easily, which makes it easier to analyze

the behavior of a component when many adapters are applied.

2.2.3 Bracciali et al.

Bracciali et al. [6] uses a subset of π-calculus [49] to formally express and rea-

son about component adaptation. Component interfaces are expressed using

interaction patterns, which describe the input and output actions for a protocol

at a high level. It also has a limited ability express the data that is exchanged

at an abstract level. Adapters are specified by mapping action signatures

and sequences. This specification can be used to derive concrete adapters in

a way to avoid deadlocks and satisfy all action correspondences as expected

by the mapping. The use of π-calculus enables the automatic verification of

many properties for interacting systems, which includes the compatibility of

component protocols.

2.2.4 Poizat et al.

Poizat et al. [54] specify interfaces using signatures and labelled transition sys-

tems [45], through which behavior is modeled by a process algebra. Mappings

are expressed with regular expressions of synchronous vectors, which express

not only synchronization between processes on the same event names, but

more general correspondences between the events of the process involved. Us-

ing interface specifications and mappings, they have an algorithm which can

generate the concrete steps required by an adapter to ensure correct interac-

tion, with or without message ordering.

Using their adapter generation algorithm, they suggest a methodology for

17

incrementally building a software system from components, where an adapter

is generated each time a software component is added to ensure correct inter-

action between components. Their claim is that an incremental approach can

avoid the problems of a global approach, where every change in any component

might force global analysis of the entire system.

2.3 Combining adapters

This section surveys related work where multiple interface adapters are com-

bined together to achieve interface adaptation. While a few mention the possi-

bility of lossy interface adapters, almost all of the work mentioned in this sec-

tion are focused on lossless interface adapter chaining, and only Kim et al. [34]

actually attempts to analyze loss.

2.3.1 Keller and Hölzle

Keller and Hölzle [32] use binary component adaptation to adapt the interface

to Java classes. Their work requires that all Java classes and delta files are

distributed as a single package, where adaptation allows developers to maintain

binary compatibility even when the interface evolves, avoiding the need to

modify source code.

The changes needed to adapt an interface are described in an adaptation

specification written in a Java-like language. The adaptation specification is

then compiled into a delta file, which contains bytecode that implements the

changes and specifies where in a class file the bytecode should be inserted.

The delta file is not executed directly when adapting an interface, but instead

specifies how Java classes should be modified. This is analogous to having

an interface adapter integrated directly with a service rather than running it

separately. The rewriting of Java classes is achieved at load-time, and the

necessary support is integrated with the Java virtual machine [43].

18

Delta files can be chained together so that independent functionality or non-

overlapping methods and fields can be modified in multiple delta files developed

separately. While there is no discussion of chaining version-to-version delta

files to provide compatibility between a large gap in versions, their work can

support such approaches. However, the developer must manually select the

delta files and determine their position in the chain.

2.3.2 Hallberg

Hallberg [27] suggests a methodology to maintain permanent backwards com-

patibility for modules in Haskell [53], although the approach can be applied to

other programming languages as well. Modules would no longer be identified

only by name, instead being identified by name and version, and Haskell code

would always import specific versions of modules. The version of a module will

be incremented whenever there is a change in the interface, but modules that

are compatible with previous versions of the interface will also be maintained

in perpetuity. This methodology would allow code to always be compatible

with a module even when the module continues to evolve.

To ensure that a module can always be used even with previous versions of

the interface, it is suggested that an adapter be created that allows a specific

version of a module to be used with the interface of the previous version.

Chaining these adapters together will allow the latest version of a module to

be used through any of the older versions of the interface.

2.3.3 Kaminski et al.

Kaminski et al. [31] suggests using a chain of adapters for web services to

maintain permanent backward compatibility even as the interface of a web

service evolves. With every change in the interface, an adapter is constructed

so that the new version of the web service can be used with the old version

19

of the interface. Further changes are handled not by updating the adapters,

but by chaining adapters for consecutive versions of the web service. Clients

do not access a web service directly; instead, clients indirectly access the web

service through an adapter that provides an interface for a specific version.

This allows clients to continue access a web service through an older version

of the interface, negating the need to update code within clients.

2.3.4 Vayssiére

Vayssiére [71] supports the interface adaptation of proxy objects for Jini [1].

The goal is to enable clients to use services even when they have different

interfaces than expected. It provides an adapter service which hooks into the

lookup service, so that a client can use a proxy object without having to be

aware that any adaptation occurs.

Adapters are registered with the adapter service, which in turn registers all

acyclic chains of interface adapters that can adapt to a given type to the lookup

service. Registering all possible chains can result in an exponential number of

registrations in the lookup service (they claim that the maximum number of

registrations would be limited, but they ignore that there can be an exponential

number of paths in a reasonable graph). There is no discussion of which chain

of adapters should be used to adapt an interface, simply specifying that all

chains matching the expected input and output types should be returned.

2.3.5 Gschwind

Gschwind [26] allows components to be accessed through a foreign interface and

implements an interface adaptation system for Enterprise JavaBeans [47]. It

implements a centralized adapter repository that stores adapters, along with

weights that mark the priority of an adapter. Clients query an adaptation

component to obtain an interface adapter chain, which is used to convert the

20

interface of an object into another. The adaptation component, which runs

on the client side, retrieves the required adapters from the adapter repository.

An adapter is publicly distributed as a single archive that includes the adapter

code and description.

The adaptation repository uses Dijkstra’s algorithm [14] to construct the

shortest interface adapter chain that adapts a source interface into a target

interface. While there is support for marking an adapter as lossy or not,

it does not have the capability to properly analyze and compare the loss of

interface adapter chains.

2.3.6 Ponnekanti and Fox

Ponnekanti and Fox [55] suggests using interface adapter chaining for network

services to handle the different interfaces available for similar types of services.

They provide a way to query all services whose interfaces can be adapted

to a known interface. They also support lossy adapters, but the support is

limited to detecting whether a particular method and specific parameters can

be handled at runtime. They do not provide a method to analyze the loss of

an interface adapter chain, so they are unable to choose a chain with less loss

when alternatives are available. Adapter chains are constructed through a rule

system based on the source and target interfaces of adapters, which is similar

to constructing a path in a graph through a blind search algorithm. They

also support the composition of services in addition to transforming a single

interface to another, which is accomplished by constructing a tree of interface

adapters.

2.3.7 Kim et al.

Kim et al. [34] describes an ad hoc scheme for analyzing the loss in interface

adapter chains. The scheme is based on boolean matrixes which specify the

21

methods required in a source interface to implement a method in a target

interface. A mapping product is defined on these matrixes which computes the

loss incurred when interface adapters are chained. The mathematical model

they use is not rigorously constructed, however. They also only consider the

adaptation of methods as a whole and do not handle the case where methods

could handle certain arguments but not others.

Using their scheme, they describe an algorithm based on uniform cost

search [61] which can construct an interface adapter chain with the least

adaptation loss. Despite having exponential time in the worst case, their ex-

periments with small random graphs indicate that the algorithm might work

quickly in practice. They also show that interface adapter chains constructed

with the algorithm have significantly less loss than those constructed through

a depth-first search, which ignores loss.

22

3. Discrete chains

In this chapter, we begin by constructing the most basic framework for analyz-

ing lossy interface adapter chaining. It is assumed that a method in a target

interface can be implemented as long as all of the prerequisite methods in the

source interface are available. It ignores the possibility that there is no way an

argument to a method in the target interface can be converted to an argument

to a method in the source interface, so that an adapted method would always

work properly if it works at all.

3.1 Mathematical basics

We can start formalizing the problem of lossy interface adaptation by defining

an interface adapter graph. This is a directed graph where interfaces are nodes

and adapters are edges. If there are interfaces I1 and I2 with an adapter A

that adapts source interface I1 to target interface I2, then I1 and I2 would be

nodes in the interface adapter graph while A would be a directed edge from I1

to I2.

We do not assume that there can be at most one adapter which can adapt

one interface to another. This reflects the fact that there can be multiple

adapters from different developers, similar to how there can be multiple device

drivers available for a graphics card. It also simplifies some of the arguments,

although they would still hold even with such a restriction with only minor

changes in the proofs.

We will be using a range convention for the index notation used to express

matrixes and vectors [11].

23

3.1.1 Method dependencies

The next step is to formally describe each adapter, i.e. each edge in the interface

adapter graph, in a way that would be useful for analyzing loss. We should

be able to figure out which methods in the target interface can be provided

by an interface adapter given the methods available in the source interface.

We do this by defining a method dependency matrix, a boolean matrix which

describes how an interface adapter implements methods in the target interface

using available methods in the source interface.

The method dependency matrix aji for an adapter A, where aji represents

either the matrix itself or a single component in the matrix depending on the

context, is defined by how the adapter depends on the availability of a method

in the source interface in order to implement a method in the target interface.

aji is true if and only if method j in the target interface can be implemented

only if method i in the source interface is available. We denote the method

dependency matrix associated with an adapter A as depend(A).

We also define a method availability vector pi for an interface, where each

component pi is true if and only if method i is available. This boolean vector

is not intrinsic to an interface, unlike the method dependency matrix which

is intrinsic to an interface adapter. Instead, it is used to represent the loss in

interface adaptation such that method i in the target interface can be used only

if pi is true. For a fully functional service that implements all methods specified

in its interface, the components of its method availability vector should all

be true. We denote the number of true components in method availability

vector pi as ‖pi‖, which is equivalent to the Manhattan norm [69] when true

and false components are replaced by 1 and 0, respectively.

Given method availability vector pi for a source interface and the method

dependency matrix aji for an interface adapter, we can derive the method

availability vector qj for the target interface. A method j in the target interface

can only be implemented if all of the methods it depends on are available in

24

the source interface. So if qj is to be true for fixed j, then all pi must be true

when aji is true:

qj =
∧
i

(aji → pi) =
∧
i

(¬aji ∨ pi) (3.1)

However, equation (3.1) is incomplete in that it does not properly distin-

guish between methods which can always be implemented and methods which

cannot be implemented given the source interface. For example, a method

that returns the value of π does not need anything from the source interface,

whereas there would be no way to implement a video playback method given

only a source interface specialized exclusively for audio playback. For both

cases, all aji are false for a specific method j, and equation (3.1) would give

the wrong result for the latter case.

This can be worked around by defining a dummy method that is never avail-

able for every interface. We arbitrarily call this “method 1”, so that p1 will

always be false for any method availability vector. It is easy to see that extend-

ing the definition of the method dependency matrix with the following rules

is consistent with our definitions and equations for the method dependency

matrix and method availability vector:

• a11 is true, while a1i is set to false for all i 6= 1.

• If method j can always be implemented in the target interface, set aji to

false for all i.

• If method j can never be implemented given the source interface, set aj1

to true, while aji is set to false for all i 6= 1.

• If method j depends on the availability of actual methods in the source

interface, then aj1 is false.

For succinctness, we denote a method availability vector for interface I

which represents that all methods are available, i.e. when the component for

the dummy method is false while all the other components are true, by 1′I .

25

We also define the operator ⊗ for a method dependency matrix as applied

to a method availability vector to represent the operation in equation (3.1), or

in other words:

aji ⊗ pi ≡
∧
i

(¬aji ∨ pi) (3.2)

It is easy to see that a square boolean matrix where the diagonals are true

and the rest of the components are false is an identity matrix for the adaptation

operator ⊗. We denote an identity matrix with n rows as In.

3.1.2 Adapter composition

To analyze the chaining of lossy interface adapters, we are also interested in

how to derive a composite method dependency matrix from the composition

of two method dependency matrixes, which would be equivalent to describing

the chaining of two interface adapters as if they were a single interface adapter.

Given interfaces I1, I2, and I3, let the corresponding method availability

vectors be pi, qj, and rk. In addition, let there be interface adapters A1 and

A2, where A1 converts I1 to I2 and A2 converts I2 to I3, with corresponding

method dependency matrixes aji and bkj, respectively. We would like to know

how to derive the method dependency matrix that would correspond to an

interface adapter equivalent to A1 and A2 chained together.

From equation (3.1) and our assumptions:

rk =
∧
j

(¬bkj ∨ qj)

=
∧
j

(
¬bkj ∨

∧
i

(¬aji ∨ pi)

)
=

∧
j

∧
i

(¬bkj ∨ ¬aji ∨ pi)

=
∧
i

∧
j

(¬bkj ∨ ¬aji ∨ pi)

26

=
∧
i

(∧
j

(¬bkj ∨ ¬aji) ∨ pi

)

=
∧
i

(
¬
∨
j

(bkj ∧ aji) ∨ pi

)

We reuse the operator ⊗ to represent the composition of two method de-

pendency matrixes, and by comparing the above with equation (3.1), we can

define it as:

bkj ⊗ aji =
∨
j

(bkj ∧ aji) (3.3)

In from section 3.1.1 is also an identity matrix for the method dependency

matrix composition operator ⊗.

The ⊗ operator is “associative”1 when applied to method dependency ma-

trixes and a method availability vector, i.e. bkj ⊗ (aji ⊗ pi) = (bkj ⊗ aji) ⊗ pi,

which shows that in terms of loss, chaining adapters and then applying it to

a source interface is equivalent to applying each adapter one by one to the

source interface:

bkj ⊗ (aji ⊗ pi) =
∧
j

(
¬bkj ∨

∧
i

(¬aji ∨ pi)

)
=

∧
j

∧
i

(¬bkj ∨ ¬aji ∨ pi)

=
∧
i

∧
j

(¬bkj ∨ ¬aji ∨ pi)

=
∧
i

∧
j

(¬(bkj ∧ aji) ∨ pi)

=
∧
i

(∧
j

¬(bkj ∧ aji) ∨ pi

)
1It is not technically associative in this context as the ⊗ operator as applied to method

dependency matrixes is not really the same as the ⊗ operator as applied to a method

dependency matrix and a method availability vector, similarly to how × for numbers is

different from × for sets.

27

=
∧
i

(
¬
∨
j

(bkj ∧ aji) ∨ pi

)
= (bkj ⊗ aji)⊗ pi

Likewise, method dependency matrix composition is associative:

clk ⊗ (bkj ⊗ aji) =
∨
k

(
clk ∧

∨
j

(bkj ∧ aji)

)
=

∨
k

∨
j

(clk ∧ bkj ∧ aji)

=
∨
j

∨
k

(clk ∧ bkj ∧ aji)

=
∨
j

(∨
k

(clk ∧ bkj) ∧ aji)

)
= (clk ⊗ bkj)⊗ aji

However, method dependency matrix composition is not commutative, as

can be easily seen by considering the composition of method dependency ma-

trixes that are not square matrixes.

We can also formalize the somewhat vague intuition that a longer interface

adapter chain is worse in terms of loss. If A1 and A2 are interface adapters,

where A1 converts I1 to I2 and A2 converts I2 to I3, with aji = depend(A1)

and bkj = depend(A2) in which a11 and b11 are both true as in section 3.1.1,

then for pk = bkj ⊗ 1′I2 and p′k = bkj ⊗ aji ⊗ 1′I1 :

pk = (¬bk1 ∨ f) ∧
∧
j 6=1

(¬bkj ∨ t) = ¬bk1

p′k =
∧
j

(
¬bkj ∨

(
(¬aj1 ∨ f) ∧

∧
i 6=1

(¬aji ∨ t)

))
=

∧
j

(¬bkj ∨ ¬aj1)

= ¬bk1 ∧
∧
j 6=1

(¬bkj ∨ aj1)

28

∴ p′k → pk (3.4)

With I1 and I2 being the source interfaces for the interface adapters that

aji and bkj represent, respectively, we can also infer from equation (3.4) that

‖bkj ⊗ 1′I2‖ ≥ ‖bkj ⊗ aji ⊗ 1′I1‖ (3.5)

which, along with the associativity of method dependency matrix composition,

formalizes the notion that extending an interface adapter chain is worse in

terms of loss.

The definitions of the method dependency matrix and the method avail-

ability vector in section 3.1.1, along with the associativity rules proven in this

section, provide a succinct way to mathematically express and analyze the

chaining of lossy interface adapters.

3.1.3 An example

As an example, we apply the mathematical framework to the interfaces and

adapters in figure 1.2. We will denote interfaces Video1, Video2, Video3, and

Audio as I1, I2, I3, and I4, respectively, while A1, A2, A3, A4, A5, and A6 de-

note the interface adapters Video1toVideo2, Video2toVideo3, Video1toAudio,

AudiotoVideo3, Video3toAudio, and Video3toVideo1, respectively. We also in-

dex each method in the order they appear in figure 1.2 along with an extra

dummy method with index 1, and let ak
ji = depend(Ak). Figure 1.2 is already

an interface adapter graph, which is simplified and labeled in figure 3.1.

Some method dependency matrixes would be:

a1
ji =

t f f

f t f

t f f

t f f

t f f

29

I1

I2

I3

I4

A1 A2

A3

A4

A5

A6

Figure 3.1: Interface adapter graph for figure 1.2.

a2
ji =

t f f f f

f t f f f

t f f f f

t f f f f

t f f f f

a5
ji =

t f f f f

t f f f f

f f f t t

Given a fully functional service which conforms to interface Video1, we

would expect that only the play method would be available for interface Video3

after going through the adapter chain A1 and A2, which can be verified by

computing the method availability vector a2
kj ⊗ a1

ji ⊗ 1′I1 :

a2
kj ⊗ a1

ji ⊗ 1′I1 = [f, t, f, f, f]

One can also verify the following by hand, which would be expected from

the associativity of ⊗. Associativity can be very useful in developing algo-

rithms analyzing chains of lossy interface adapters, since fragments of an in-

30

terface adapter chain can be assembled independently and still give the same

method dependency matrix for the whole chain.

a5
lk ⊗ a2

kj ⊗ a1
ji ⊗ 1′I1

= a5
lk ⊗ (a2

kj ⊗ (a1
ji ⊗ 1′I1))

= ((a5
lk ⊗ a2

kj)⊗ a1
ji)⊗ 1′I1

= (a5
lk ⊗ a2

kj)⊗ (a1
ji ⊗ 1′I1)

= [f, f, f]

We can also verify the following, which is consistent with equations (3.4)

and (3.5), and is in line with the intuition that extending an adapter chain

can only be worse in terms of loss, although this does not mean that a longer

adapter chain is always worse than a shorter adapter chain.

a5
lk ⊗ 1′I3 = [f, f, t]

a5
lk ⊗ a2

kj ⊗ 1′I2 = [f, f, f]

3.2 Optimal adapter chaining

One of the things that could be hoped from the mathematical framework in

section 3.1 is that it could help with the development of an efficient algorithm

for obtaining an optimal interface adapter chain from an actual service to a

target interface that incurs the least loss in terms of functionality. Unfortu-

nately, the problem is NP-complete, as will be shown in this section, dashing

hopes for such an algorithm.

First, we must formally describe the problem, which we will call CHAIN.

Let us have an interface adapter graph ({Ii}, {Ai}), where {Ii} is the set of

interfaces and {Ai} is the set of interface adapters. Let ak be the method

dependency matrix associated with adapter Ak. Let S ∈ {Ii} be the source

interface and T ∈ {Ii} be the target interface. Then the problem is whether

31

S T

setting
variables

setting
clauses filter

Figure 3.2: Boolean expression reduced to an interface adapter graph.

there is an interface adapter chain [AP (1), AP (2), . . . , AP (m)] such that the source

of AP (1) is S, the target of AP (m) is T , and ‖vT‖ = ‖aP (m)⊗· · ·⊗aP (2)⊗aP (1)⊗
1′S‖ is at least as large as some parameter N .

Informally, this is an optimization problem which tries to maximize the

number of methods that can be used in a fixed target interface, obtained by

applying an interface adapter chain on a fully-functional service which con-

forms to the source interface. We show that the problem is NP-complete by

reducing 3SAT [8] to CHAIN.

Based on the conjunctive normal form of a boolean expression E with

exactly 3 literals in each clause, we will construct an interface adapter graph

G in three parts and the corresponding method dependency matrixes. One

part will model the setting of each variable to true or false, another part will

model the value of each clause once the variable values are set, and the last

part will serve as a filter so that E is satisfiable if and only if there is a chain

in G such that ‖vT‖ equals the number of clauses in E.

Figure 3.2 shows what a reduction from an instance of 3SAT to an instance

of CHAIN would generally look like.

3.2.1 Representing values

We will represent values of literals and clauses using the method availability

vector for each interface, where all but one of the nodes in the constructed

32

interface adapter graph will contain the same set of methods. At certain

points in the interface adapter graph, a true or false component in the method

availability vector would directly map to the value of a literal or a clause.

For almost all nodes, including the source, the set of methods will be fixed

with one dummy method, one method for each clause, and one method for each

literal, so almost all method dependency matrixes will be square matrixes. As

the method dependency matrixes will have large parts in common with the

identity matrix, we will only be mentioning how each matrix differs from the

identity matrix.

Each method will be labeled as follows:

• The dummy method will be labeled d.

• For each clause ci, the method will be labeled ci.

• For each variable vi, the method for the variable itself will be labeled li,

while the method for the negation of the variable will be labeled li.

There is a single method dependency matrix used in the filter part of the

graph that will not be a square matrix.

3.2.2 Handling literals

The basic approach of this part of the graph, which we will call the variable

handling subgraph, is to set the value for each variable depending on which

adapters are chosen to be included in the chain. For each variable v1, v2,

. . . , vv, we define nodes V1, V2, . . . , Vv, and we let V0 = S. Between each

Vi−1 and Vi, we define two adapters which will leave everything about the

method availability vector unchanged from one node to the next except for the

components corresponding to the literals for vi. One will make the variable

effectively true, while the other will make the variable effectively false.

33

S
V0

V1 V2 V3

Figure 3.3: Choosing a variable assignment.

For each Vi for i > 0, we will define a positive literal adapter Ali with

method dependency matrix ali and a negative literal adapter Ali
with method

dependency matrix ali . For the positive literal adapter, ali
lij

is false for all j,

ali
lid

is true, and ali
lij

is false for all j other than d. Similarly for the negative

literal adapter, ali
lij

is false for all j, ali
lid

is true, and ali
lij

is false for all j other

than d.

It should then be easy to see that for a method availability vector pi with

a false pd, all components of ali ⊗ pi should be the same as pi except for the

components corresponding to li and li, which will be true and false, respec-

tively. Likewise, all components of ali ⊗ pi should be the same as pi except

for the components corresponding to li and li, which will be false and true,

respectively.

The rest of the interface adapter graph will be the descendant of Vv, so

any adapter chain from S to T must go through all of V0, V1, . . . , Vv in order,

and for every variable one and only one of the positive literal adapter or the

negative literal adapter must be chosen as in figure 3.3 due to the structure

of the variable handling subgraph. This is equivalent to choosing a variable

assignment, and at Vv, the method availability vector pi will be such that for

each variable vi, pli and pli
will have opposite values, so that it would be the

same as setting the value of vi to pli .

34

3.2.3 Handling clauses

Based on the variable assignment that is taken care of by the variable handling

subgraph in section 3.2.2, this part of the graph, which we will call the clause

handling subgraph, is responsible for determining the value of each clause.

In order to model disjunction, not only do we define a node Ci for each

clause ci, we also define three subnodes Cij, for j from 1 to 3, for each of

the literals in the clause. These nodes are separate from those defined in

section 3.2.2. The idea is that if any of the literals are true, then at least one

of the nodes will end up with a method availability vector marking the clause

as true, so we can use this to mark the same for Ci itself. We also set C0 = Vv

for convenience of notation, and c will be the number of clauses.

For each clause ci, there are edges from Ci−1 to each of the subnodes Cij,

and in turn there are edges from each subnode Cij to Ci. So there will be three

alternate paths from Ci−1 to Ci.

For edge (Ci−1, Cij), if l corresponds to the literal for Cij, the method

dependency matrix a for the edge is defined by setting acil to true and acik to

false for all k other than l. Then it should be easy to see that a⊗p is the same

as the method availability vector p except for the component pci
, which would

be true if and only if pl is also true. For edge (Cij, Ci), the corresponding

method dependency matrix is simply the identity matrix.

If clause ci is true, then one of the literals must be true. Then the path

through the subnode Cij for the true literal will result in a true component for

the clause in the method availability vector at Ci. If the clause is not true,

then the same component will be false no matter the path taken, since it will

be false for all subnodes Cij.

T will be the descendant of Cc, and since the source is in the variable

handling subgraph, which is only connected to the clause handling subgraph

by C0, any interface adapter chain from S to T must go through each of the

nodes C0, C1, . . . , Cc in order as in figure 3.4. And if all clauses are true

35

C0 C1 C2

Figure 3.4: Disjunction through alternate paths.

with the variable assignment done in the variable handling subgraph, which

is equivalent to choosing which adapters to include from the subgraph, only

then will there be a path from C0 to Cc which will result in true components

for all clauses in the method availability vector at Cc.

3.2.4 Filtering

The last part of the constructed interface adapter graph is the filtering part,

which discards all methods corresponding to literals from the method avail-

ability vector so that only the dummy method and methods corresponding to

clauses remain.

The filtering subgraph is made up of only two nodes and a single edge.

One of the nodes is the target T , and its interface only contains the dummy

method and all the methods corresponding to clauses. The other node is Cc

from section 3.2.3. The (c + 1)× (2v + c + 1) method dependency matrix aji

for the edge from Cc to T defined as follows accomplishes the filtering:

• For all clauses ci, acici
is true.

• For the dummy method, add is true.

• All other components are false.

36

3.2.5 Analysis of the reduction

The constructed interface adapter graph has v + 4c + 2 nodes and 2v + 6c +

1 edges, where v is the number of variables and c is the number of clauses.

Also, each method dependency matrix has at most (1+c+2v)2 components, so

the reduction of a candidate for 3SAT to a candidate for CHAIN can be done

in polynomial time. So we just need to verify that there is a positive answer

for CHAIN with N = c if and only if there is a positive answer for 3SAT.

If the boolean expression is satisfiable, then there is a variable assignment

that makes it true. Consider the following interface adapter chain. In the

variable handling subgraph, include edges that correspond to the variable as-

signment. In the clause handling subgraph, there is guaranteed to be a path

where all components corresponding to clauses in the method availability vec-

tor at the target end up being true, given the path in the variable handling

subgraph, so use this path in the chain. Then ‖vT‖ will be exactly c.

Conversely, suppose there is an adapter chain such that ‖vT‖ = c. Then as-

signing values to variables according to the path through the variable handling

subgraph results in a satisfying variable assignment for the boolean expression.

This is because the clause handling subgraph and the fact that ‖vT‖ = c to-

gether imply that all clauses are true for the derived variable assignment. And

given an arbitrary interface adapter chain and an optimal chain, it is easy

to verify whether the arbitrary adapter chain is not optimal, so CHAIN is

NP-complete.

3.3 A greedy algorithm

As shown in section 3.2, the problem of finding an optimal interface adapter

chain that would make available the most methods in the target interface is an

NP-complete problem. Short of developing a polynomial-time algorithm for an

NP-complete problem, practical systems will have to use a heuristic algorithm

37

or an exponential-time algorithm with reasonable performance in practice.

Algorithm 1 is a greedy algorithm that finds an optimal interface adapter

chain between a given source interface and a target interface. Given an inter-

face adapter graph G, it works by looking at every possible acyclic adapter

chain with an arbitrary source that results in the target interface t in order

of increasing loss, taking advantage of equation (3.5), until we find a chain

that starts with the desired source interface s. In this context, loss means the

number of methods unavailable in the target interface given a fully functional

service with the source interface, which is computed in algorithm 2, so the

algorithm is guaranteed to find the optimal interface adapter chain. In the

worst case, however, the algorithm takes exponential time since there can be

an exponential number of acyclic chains in an interface adapter graph.

While algorithm 1 may take exponential time in the worst case, results with

a similar algorithm from [34] based on a small randomly generated interface

adapter graph suggest that the greedy algorithm has acceptable performance

in practice.

Algorithm 1 can easily be extended to support the selection of an optimal

source interface with weights associated with methods expressing their impor-

tance as in algorithm 3. This can be done by checking that the starting point

of an interface adapter chain is included in a set of possible source interfaces,

instead of just comparing it to a single source interface, and summing the

weights for the available methods in the target interface as in algorithm 4 and

using equation (3.4), instead of just counting the methods.

Unlike algorithm 1, which would find an interface adapter chain after a

single service was presumably found by a service discovery process, algorithm 3

can be used in the service discovery process itself to search for the best service,

not just in terms of what is required from the service, but also considering

how well the client could use the service. And by weighting the methods in

the target interface, it can take into account the importance of each method.

38

Algorithm 1 A greedy algorithm for interface adapter chaining.

procedure Greedy-Chain(G = (V,E), s, t)

C ← {[]} . chains to extend

M = ∅ . discarded chains

D ← {[] 7→ Idim(1′
t)
} . method dependency matrixes

while C 6= ∅ do

c← element of C minimizing Loss(c,D)

if c 6= [] ∧ source(c[1]) = s then

return c

else if no acyclic chain not in C ∪M extends c then

C ← C − {c}
M ←M ∪ {c}

else

if c = [] then

B ← {[e] | e ∈ E, target(e) = t}
else

B ← {e : c | e ∈ E, target(e) = source(c[1])}
end if

remove cyclic chains from B

C ← C ∪B
D ← D ∪ {e : c 7→ D[c]⊗ depend(e) | e : c ∈ B}

end if

end while

end procedure

39

Algorithm 2 Computing the loss of an interface adapter chain.

function Loss(c, D)

s← source(c[1])

t← target(c[|c|])
return dim(1′t)− ‖D[c]⊗ 1′s‖

end function

By having sufficiently large weights for essential methods compared to those of

non-essential methods, algorithm 3 can also guarantee that an adapter chain

which makes all essential methods available will always be preferred over those

which do not.

40

Algorithm 3 Greedy discovery for weighted interface adapter chaining.

procedure Greedy-Chain(G = (V,E), S, t, W)

C ← {[]} . chains to extend

M = ∅ . discarded chains

D ← {[] 7→ Idim(1′
t)
} . method dependency matrixes

while C 6= ∅ do

c← element of C maximizing Weight(c,D,W)

if c 6= [] ∧ source(c[1]) ∈ S then

return (source(c[1]), c)

else if no acyclic chain not in C ∪M extends c then

C ← C − {c}
M ←M ∪ {c}

else

if c = [] then

B ← {[e] | e ∈ E, target(e) = t}
else

B ← {e : c | e ∈ E, target(e) = source(c[1])}
end if

remove cyclic chains from B

C ← C ∪B
D ← D ∪ {e : c 7→ D[c]⊗ depend(e) | e : c ∈ B}

end if

end while

end procedure

41

Algorithm 4 Computing the weight of an interface adapter chain.

function Weight(c, D, W = wi)

s← source(c[1])

t← target(c[|c|])
pi ← D[c]⊗ 1′s

return
∑

pi
wi

end function

42

4. Probabilistic chains

Chapter 3 took the approach of assuming that a method in a target interface

could be implemented as long as all the prerequisite methods in the source

interface were available. This also implies that any argument given to the

method in the target interface can always be converted into arguments that

the methods in the source interface can handle, as well as it always being

possible for the results to be converted to a form appropriate for the target

interface. This assumption is not always true: for a trivial example, negative

numbers for a square root function cannot be handled if either the source

interface or target interface are unaware of imaginary numbers.

This chapter describes a probabilistic approach to handling the partial

adaptation of methods, where the loss may occur not just due to missing

functionality or methods, but also due to an interface adapter being unable to

handle all arguments given for a method in a target interface. The approach

extends the work described in chapter 3.

4.1 Mathematical basics

As in section 3.1, we can define an interface adapter graph, which is a directed

graph where interfaces are nodes and adapters are edges. A range convention

for the index notation used to express matrixes and vectors will also be in

effect [11].

43

Vm,I(a) Method m of interface I can properly handle ar-

gument a.

Vm,I Method m of interface I can properly handle its

argument.

CA
m→m′ Interface adapter A can successfully convert an ar-

gument for method m in the target interface to an

argument for method m′ in the source interface

and convert back the result.

Table 4.1: Probabilistic events.

4.1.1 Method dependencies

We develop a probabilistic approach by starting off with the most general

form of expressing the probabilities and adding assumptions until we have a

probabilistic formula that is practical. Without additional assumptions, the

probabilities can only be expressed in a way that is useless for analyzing real

systems. The additional assumptions allow us to express the desired probabil-

ities in a way that they can be feasibly computed from a set of values that can

be measured in practice.

We first describe the notation for expressing certain probabilistic events in

table 4.1. These events denote whether a method can handle a given argument,

or whether an interface adapter can convert an argument for a method in

a target interface to an argument for a method in the source interface and

successfully convert back the result. We assume that a method only accepts a

single argument: this is not a problem since methods with multiple arguments

can simply be modeled as a method accepting a single tuple with multiple

components [70]. If a method does not need an argument, we treat it as

receiving a dummy argument anyway.

44

Let us say that we wish to adapt methods in source interface IS into

method j in target interface IT . The most general form for expressing the

probability that a method could handle an argument is to sum the probabil-

ities for every possible argument, where we must consider the probability of

the method receiving a specific argument and then the probability that the

method can handle it:

P (Vj,IT
) =

∑
a

P (Vj,IT
(a))P (A = a) (4.1)

The most general form for expressing the probability requires that we know

the probability distribution of arguments, which is not feasible except for the

simplest of argument domains. For example, the probability distribution for a

simple integer argument may require 232 or 264 probabilities to be expressed

for the typical computer architecture, and even measuring such a probability

distribution may not be feasible in the first place. It is also not feasible that

we already know the probabilities for how a method can handle each and every

possible argument.

For this reason, we make the assumption that the probabilities do not

depend on the specific arguments. Given this assumption, we can now express

P (Vj,IT
) in terms of whether an argument can be converted and whether it

can be handled. More specifically, this means that for all methods in the

source interface that the interface adapter A requires to implement a method

in the target interface, it must be the case that the argument can be converted

and the method in the source interface can handle the converted argument.

Using the method dependency matrix defined in section 3.1.1, P (Vj,IT
) can be

expressed as:

P (Vj,IT
) = P

⋂
aji

(
Vi,IS

∩ CA
j→i

) (4.2)

This is still too unwieldy an expression to be practical, since it is unclear

45

how dependencies in the events for different methods in the source interface

affect the overall probability. It would also be unclear how to measure the

probabilities beforehand without trying out every possible argument and con-

figuration of interface adapter chains, something that is clearly not feasible.

Therefore we make an additional assumption that the events for separate meth-

ods in the source interface are independent.

With the additional assumption, P (Vj,IT
) can be expressed as:

P (Vj,IT
) =

∏
aji

P (Vi,IS
∩ CA

j→i) (4.3)

However, equation (4.3) is still not appropriate for practical use. The reason

is that it entangles the work done by the interface adapter and whether the

method in the source interface can handle the converted argument. Basically,

the probabilities intrinsic to the interface adapter and the source interface are

entangled. If the source interface itself is the result of adaptation through an

interface adapter chain, then we have the problem of a configuration-dependent

event being entangled with a configuration-independent event, and there is no

simple way to derive the required probabilities.

Thus we make one final additional assumption that the probability an

interface adapter can successfully convert arguments and results is independent

from the probability that a method in the source interface can handle an

argument. This allows us to express P (Vj,IT
) as:

P (Vj,IT
) =

∏
aji

P (Vi,IS
)P (CA

j→i) (4.4)

Equation (4.4) is finally in a form that can be used practically. The prob-

ability that an interface adapter A can successfully convert an argument for

method j in the target interface to an argument for method i in the source

interface, P (CA
j→i), is a value that is intrinsic to an interface adapter. In prin-

cipal, it could be measured empirically or obtained through analysis of the

46

interface adapter code. The probability that method mi in source interface IS

can handle an argument, P (Vi,IS
), is also a value that can be obtained, ei-

ther through analytical or empirical means if the interface of a service is being

adapted, or through a recursive application of equation (4.4).

We now have the basis for describing a framework similar to the one de-

veloped for the discrete chain approach. As in chapter 3, we define a method

availability vector and a method dependency matrix, but in addition we also

define a conversion probability matrix.

As before, the method availability vector pi expresses how well a method

is supported in an interface, and it is not intrinsic to an interface but rather

represents the loss from interface adaptation. Unlike in section 3.1.1, however,

where the method availability vector is a boolean vector merely expressing

whether a method is available or not, the components for a method availability

vector in the probabilistic approach are probabilities. pi is defined as the

probability that method i can handle an argument it receives, i.e. pi = P (Vi,I).

The method dependency matrix is the same as defined in section 3.1.1 and

is used in equation (4.4). Unlike for the discrete chain approach, however, the

method dependency matrix does not suffice to describe the relevant informa-

tion for an interface adapter. We also require a set of probabilities P (CA
j→i) for

how well an interface adapter converts an argument for a method in the target

interface to that for the relevant method in the source interface. The con-

version probability matrix tji is defined in terms of these probabilities, where

tji = P (CA
j→i).

Given method availability vector pi, method dependency matrix aji, and

conversion probability matrix tji, we can now define the adaptation operator⊗.

Instead of just the method dependency matrix being applied to the method

availability vector, the conversion probability matrix must also be applied in

conjunction with the method dependency matrix:

47

(aji, tji)⊗ pi =
∏
aji

tji pi (4.5)

We will also call a tuple of a method dependency matrix and a conver-

sion probability matrix such as (aji, tji) a probabilistic adaptation factor. We

will denote the probabilistic adaptation factor for an interface adapter A as

depend(A).

It should be emphasized that equation (4.5) is only rigorously correct given

the following three assumptions. However, the three assumptions make it pos-

sible to feasibly compute P (Vi,I) from values that can be feasibly measured or

estimated a priori in a rigorously sound manner, instead of having to define

an ad hoc computational framework where definitions are vague in their oper-

ational meaning. It is still an open question of how closely real systems would

fit these assumptions.

• The probabilities do not depend on the specific arguments.

• The events for separate methods in the source interface are independent.

• The probability that an interface adapter can successfully convert argu-

ments and results is independent from the probability that a method in

the source interface can handle an argument.

As in section 3.1.1, it should be noted that equation (4.5) is incomplete

in that it is ambiguous what the result should be when no aji is true. If this

is the case, it could be that the method in the target interface can always be

implemented regardless of availability of methods in the source interface, or it

could be that the method cannot be implemented no matter what.

The workaround is simple: as in section 3.1.1, a dummy method is defined

for each interface, where the method dependency matrixes follow the same

rules. For the conversion probability matrix, setting tj1 to zero for all j would

yield the expected results, given the usual convention that an empty product

48

has a value of one [38].1 We will denote a method availability vector for inter-

face I in which all methods are available and can handle all arguments by 1′I ,

where all components have value one except for the component corresponding

to the dummy method, which has value zero.

4.1.2 Adapter composition

As in section 3.1.2, we would like to be able to derive a composite probabilistic

adaptation factor from the composition of two probabilistic adaptation factors,

which would be equivalent to describing the chaining of two interface adapters

as if they were a single interface adapter.

Given interfaces I1, I2, and I3, let the corresponding method availability

vectors be pi, qj, and rk. In addition, let there be interface adapters A1 and

A2, where A1 converts I1 to I2 and A2 converts I2 to I3, with corresponding

probabilistic adaptation factors (aji, tji) and (bkj, ukj), respectively. We would

like to know how to derive the probabilistic adaptation factor (cki, vki) that

would correspond to an interface adapter equivalent to A1 and A2 chained

together.

cki is obviously derived the same way as done in section 3.1.2. As for vki,

from equation (4.4) and our assumptions:

rk =
∏
bkj

ukj qj

=
∏
bkj

ukj

∏
aji

tji pi

=

∏
bkj

∏
aji

ukj tji pi

1The values for t1i do not matter except for i = 1, so they can be arbitrarily set to zero.

49

=
∏

bkj∧aji

ukj tji pi (4.6)

We want the above to be equivalent to the following:

rk =
∏
cki

vki pi

=
∏

W
j(bkj∧aji)

vki pi (4.7)

The composition operator is derived by carefully considering the terms in

equations (4.6) and (4.7), based on collecting the terms for fixed i.

If we collect the terms in equation (4.6) with fixed i, we have (4.8). It should

be emphasized that (4.8) is not identical to (4.6): the former is a product over

varying j with both i and k fixed, while the latter is a product over varying

i and j with only k fixed. Also note that if bkj ∧ aji are all false for varying

j, then no terms affect the result of (4.6). This would be equivalent to (4.8)

having a value of one, which is expected from an empty product.

∏
bkj∧aji

ukj tji pi (4.8)

On the other hand, consider the term in equation (4.7) with fixed i. If∨
j(bkj ∧ aji) is false, i.e. bkj ∧ aji are all false for varying j, then the term is

excluded from the product and is equivalent to multiplying by one, instead. If

it is true, on the other hand, then vki pi is the term that corresponds to the

fixed i. So if we set vki pi according to (4.9),2 then equations (4.7) and (4.6)

end up having the exact same values.

vki =
∏

bkj∧aji

ukj tji (4.9)

2Remember that only k is fixed in (4.6) and (4.7), but both k and i are fixed in (4.9).

50

From this, we can conclude that the composition operator ⊗ for two prob-

abilistic adaptation factors should be defined as:

(bkj, ukj)⊗ (aji, tji) = (bkj ⊗ akj,
∏

bkj∧aji

ukj tji) (4.10)

The ⊗ operator is “associative” when applied to a probabilistic adapta-

tion factors and a method availability vector, i.e. (bkj, ukj)⊗ ((aji, tji)⊗ pi) =

((bkj, ukj)⊗ (aji, tji))⊗ pi.
3

(bkj, ukj)⊗ ((aji, tji)⊗ pi) = (bkj, ukj)⊗
∏
aji

tji pi

=
∏
bkj

ukj

∏
aji

tji pi

=
∏
bkj

∏
aji

ukj tji pi

=
∏

bkj∧aji

ukj tji pi

=
∏

W
j(bkj∧aji)

∏
bkj∧aji

ukj tji pi

=
∏

bkj⊗aji

 ∏
bkj∧aji

ukj tji

 pi

= (bkj ⊗ aji,
∏

bkj∧aji

ukj tji)⊗ pi

= ((bkj, ukj)⊗ (aji, tji))⊗ pi

Likewise, probabilistic adaptation factor composition is associative, where

the following derivation depends on the fact that bkj⊗aji =
∨

j(bkj ∧aji) must

be true if bkj ∧ aji is true:

3It is technically not associative in this context since the ⊗ operator in (bkj , ukj)⊗(aji, tji)

is not the same as the ⊗ operator in (aji, tji)⊗ pi.

51

(clk, vlk)⊗ ((bkj, ukj)⊗ (aji, tji))

= (clk, vlk)⊗ (bkj ⊗ akj,
∏

bkj∧aji

ukj tji)

= (clk ⊗ bkj ⊗ akj,
∏

clk∧(bkj⊗akj)

vlk

∏
bkj∧aji

ukj tji)

= (clk ⊗ bkj ⊗ akj,
∏

clk∧bkj∧aji∧(bkj⊗akj)

vlk ukj tji)

= (clk ⊗ bkj ⊗ akj,
∏

clk∧bkj∧aji

vlk ukj tji)

= (clk ⊗ bkj ⊗ aji,
∏

(clk⊗bkj)∧clk∧bkj∧aji

vlk ukj tji

= (clk ⊗ bkj ⊗ aji,
∏

(clk⊗bkj)∧aji

 ∏
clk∧bkj

vlk ukj

 tji

= (clk ⊗ bkj,
∏

clk∧bkj

vlk ukj)⊗ (aji, tji)

= ((clk, vlk)⊗ (bkj, ukj))⊗ (aji, tji)

However, probabilistic adaptation factor composition is not commutative,

as can be easily seen by considering the composition of probabilistic adaptation

factors whose components are not square matrixes.

We can also show a monotonicity property similar to equation (3.4), which

formalizes the notion that extending an interface adapter chain results in worse

adaptation loss. If A1 and A2 are interface adapters, where A1 converts I1

to I2 and A2 converts I2 to I3, with (aji, tji) = depend(A1) and (bkj, ukj) =

depend(A2) where they follow the rules for the dummy method in sections 3.1.1

and 4.1.1, then let pk = (bkj, ukj)⊗1′I2 and p′k = (bkj, ukj)⊗ (aji, tji)⊗1′I1 . We

have:

p1 = p′1 = 0

52

pk =
∏

j 6=1∧bkj

ukj (4.11)

p′k =
∏

i 6=1∧bkj∧aji

ukj tji =
∏
bkj

∏
i 6=1∧aji

ukj tji =
∏
bkj

ukj

∏
i 6=1∧aji

tji

 (4.12)

If method k can never be implemented given the source interface, then bk1

will be true, and given that uk1 will be zero, p′k will also have to be zero.

Otherwise, bk1 will be false, so we can do a term by term comparison of equa-

tions (4.11) and (4.12), taking advantage of the fact that ukj and tji are prob-

abilities so that they are greater than or equal to zero and lesser than or equal

to one:

0 ≤
∏

i 6=1∧aji

tji ≤ 1

ukj

∏
i 6=1∧aji

tji ≤ ukj

∴ p′k ≤ pk (4.13)

The definitions of the method dependency matrix and the method avail-

ability vector in section 4.1.1, along with the associativity rules proven in this

section, provide a succinct way to mathematically express and analyze the

chaining of lossy interface adapters using a probabilistic approach.

4.1.3 An example

As an example, we apply the probabilistic approach to the interfaces and

adapters in figure 1.2. As in section 3.1.3, we will denote interfaces Video1,

Video2, Video3, and Audio as I1, I2, I3, and I4, respectively, while A1, A2, A3,

A4, A5, and A6 denote the interface adapters Video1toVideo2, Video2toVideo3,

53

Video1toAudio, AudiotoVideo3, Video3toAudio, and Video3toVideo1, respec-

tively. We also index each method in the order they appear in figure 1.2 along

with an extra dummy method with index 1, and let (ak
ji, t

k
ji) = depend(Ak).

The method dependency matrixes are the same as with the discrete ap-

proach of chapter 3, and we repeat those shown in section 3.1.3 here:

a1
ji =

t f f

f t f

t f f

t f f

t f f

a2
ji =

t f f f f

f t f f f

t f f f f

t f f f f

t f f f f

a5
ji =

t f f f f

t f f f f

f f f t t

Figure 1.2 does not specify the conversion probabilities of arguments by

the interface adapters. In a real system, the probabilities must be obtained

experimentally by testing many of the arguments or a priori by a developer

reasoning out the probabilities. Here we let the probabilities for our example

be those specified in table 4.2, in which case the corresponding conversion

54

A j i tji

A1 2 2 1.0

A2 2 2 0.9

A3 2 3 1.0

A4 4 3 0.8

A4 5 3 0.6

A5 3 4 1.0

A5 3 5 0.9

A6 2 2 0.8

Table 4.2: Example conversion probabilities for figure 1.2.

probability matrixes are:

t1ji =

0.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

t2ji =

0.0 0.0 0.0 0.0 0.0

0.0 0.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

t5ji =

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9

From section 3.1.3, we know that the play method would be available for

interface Video3 after going through the adapter chain A1 and A2 given a fully

functional service which conforms to interface Video1, and we can infer that

55

play can handle its argument with roughly probability 0.9 by computing the

probabilistic adaptation factor (a2
kj, t

2
kj)⊗ (a1

ji, t
1
ji)⊗ 1′I1 :

(a2
kj, t

2
kj)⊗ (a1

ji, t
1
ji)⊗ 1′I1 = ([f, t, f, f, f], [0.0, 0.9, 0.0, 0.0, 0.0])

One can also verify the following by hand, which would be expected from

the associativity of ⊗:

(a5
lk, t

5
lk)⊗ (a2

kj, t
2
kj)⊗ (a1

ji, t
1
ji)⊗ 1′I1

= (a5
lk, t

5
lk)⊗ ((a2

kj, t
2
kj)⊗ ((a1

ji, t
1
ji)⊗ 1′I1))

= (((a5
lk, t

5
lk)⊗ (a2

kj, t
2
kj))⊗ (a1

ji, t
1
ji))⊗ 1′I1

= ((a5
lk, t

5
lk)⊗ (a2

kj, t
2
kj))⊗ ((a1

ji, t
1
ji)⊗ 1′I1)

= ([f, f, f], [0.0, 0.0, 0.0])

We can also verify the following, which is consistent with equations (4.13),

and is in line with the intuition that extending an adapter chain can only be

worse in terms of loss, although this does not mean that a longer adapter chain

is always worse than a shorter adapter chain.

(a5
lk, t

5
lk)⊗ 1′I3 = ([f, f, t], [0.0, 0.0, 0.9])

(a5
lk, t

5
lk)⊗ (a2

kj, t
2
lk)⊗ 1′I2 = ([f, f, f], [0.0, 0.0, 0.0])

4.2 Optimal adapter chaining

Like the optimal adapter chaining problem with the discrete chain approach,

the optimal adapter chaining problem with the probabilistic approach is NP-

complete as well. This is intuitively the case since the probabilistic approach

should be able to encompass the discrete approach, and we show this formally

in this section.

We first formally define the optimal adapter chaining problem in the prob-

abilistic approach, which we will call PROB-CHAIN. Let us have an interface

56

adapter graph ({Ii}, {Ai}), where {Ii} is the set of interfaces and {Ai} is the

set of interface adapters. Let fk be the probabilistic adaptation factor associ-

ated with adapter Ak. Let S ∈ {Ii} be the source interface and T ∈ {Ii} be

the target interface. Let {rm} be the relative invocation probabilities for the

methods in the target interface such that
∑

m rm = 1. Then the problem is

whether there is an interface adapter chain [AP (1), AP (2), . . . , AP (n)] such that

the source of AP (1) is S, the target of AP (n) is T , and
∑

m rm v
T
m is at least as

large as some probability X, where vT = fP (n) ⊗ · · · ⊗ fP (2) ⊗ fP (1) ⊗ 1′S.

Informally, this is an optimization problem which tries to maximize the

probability that an argument can be handled by a method in a fixed target

interface, obtained by applying an interface adapter chain on a fully-functional

service which conforms to the source interface. {rm} would express how often

methods are invoked relative to each other.

We next show how the probabilistic approach can encompass the discrete

approach of chapter 3. Let there be a method availability vector pi and a

method dependency matrix aji as expressed in the discrete approach. We con-

struct corresponding method availability vector p′i, method dependency ma-

trix a′ji, and conversion probability matrix t′ji as expressed in the probabilistic

approach as follows. If pi is true, then set p′i to one, else set p′i to zero. a′ji is

just the same as aji. And set all t′ji to one. Then we have:

aji ⊗ pi =
∧
j

(aji → pi) =
∧
aji

pi

(a′ji, t
′
ji)⊗ p′i =

∏
a′

ji

t′ji p
′
i =

∏
aji

p′i

and it is easy to see that a component of aji ⊗ pi is true if and only if the

corresponding component of (a′ji, t
′
ji) ⊗ p′i is one, and that a component of

aji ⊗ pi is false if and only if the corresponding component of (a′ji, t
′
ji) ⊗ p′i is

zero.

This shows how an interface adapter graph for the discrete approach can be

57

converted to one for the probabilistic approach in a way that the adaptation

operators in both approaches basically have the same behavior. Since all the

mathematics for both approaches follow from the definition of the adaptation

operators, we have just shown that the probabilistic approach can encompass

the discrete approach.

Finally, we show that PROB-CHAIN can be used to solve CHAIN from

section 3.2. Given M methods in the target interface, use the method described

above to convert an input for CHAIN to an input for PROB-CHAIN, where

we also set all rm to 1
M

. Then
∑

m rm v
T
m will be n

M
, where n is the number

of methods available from the interface adapter chain, so PROB-CHAIN with

X set to N
M

will solve CHAIN. Since CHAIN is NP-complete and it is easy to

verify if an alternate chain results in smaller
∑

m rm v
T
m, PROB-CHAIN must

also be NP-complete.

4.3 A greedy algorithm

As shown in section 4.2, the problem of finding an optimal interface adapter

chain maximizing the probability of an argument being handled by a method

in the target interface is an NP-complete problem. Short of developing a

polynomial-time algorithm for an NP-complete problem, practical systems will

have to use a heuristic algorithm or an exponential-time algorithm with rea-

sonable performance in practice.

For the optimal interface chaining problem in the probabilistic approach,

the monotonicity property as expressed in equation (4.13) allows us to use

a very similar algorithm to the one in section 3.3. Algorithm 5 is a greedy

algorithm that finds an optimal interface adapter chain between a given source

interface and a target interface. Given an interface adapter graph G, it works

by looking at every possible acyclic adapter chain with an arbitrary source that

results in the target interface t in order of increasing loss, taking advantage

58

of equation (4.13), until we find a chain that starts with the desired source

interface s.

In this context, loss means the probability that a method in the target

interface cannot handle an argument given a fully functional service with the

source interface, which is computed in algorithm 6, so the algorithm is guar-

anteed to find the optimal interface adapter chain. In the worst case, however,

the algorithm takes exponential time since there can be an exponential number

of acyclic chains in an interface adapter graph.

Just as algorithm 1 can be extended to algorithm 3 to support behavior

similar to service discovery by checking whether the current source is among

a potential set of source interfaces instead of just checking against one, algo-

rithm 5 can be similarly extended.

59

Algorithm 5 A probabilistic greedy algorithm for interface adapter chaining.

procedure Prob-Greedy-Chain(G = (V,E), s, t, {rm})
C ← {[]} . chains to extend

M = ∅ . discarded chains

D ← {[] 7→ Idim(1′
t)
} . method dependency matrixes

while C 6= ∅ do

c← element of C minimizing Prob-Loss(c,D, {rm})
if c 6= [] ∧ source(c[1]) = s then

return c

else if no acyclic chain not in C ∪M extends c then

C ← C − {c}
M ←M ∪ {c}

else

if c = [] then

B ← {[e] | e ∈ E, target(e) = t}
else

B ← {e : c | e ∈ E, target(e) = source(c[1])}
end if

remove cyclic chains from B

C ← C ∪B
D ← D ∪ {e : c 7→ D[c]⊗ depend(e) | e : c ∈ B}

end if

end while

end procedure

60

Algorithm 6 Computing the probabilistic loss of an interface adapter chain.

function Prob-Loss(c, D, {rm})
s← source(c[1])

v ← D[c]⊗ 1′s

return 1−
∑

m rm vm

end function

61

5. Abstract interpretation

Chapter 3 took the approach of treating a method as a single unit that is

either available or not available, while chapter 4 loosened this by treating the

availability of a method probabilistically. Another approach to handling the

partial adaptation of methods is to use a simple form of abstract interpreta-

tion [9, 10, 12, 30], which is the subject of this chapter.

Dividing arguments up into abstract domains, the abstract interpretation

approach looks at which abstract domains can be handled by a method instead

of looking at the likelihood. Interface adapters are “executed abstractly” to

derive which abstract domains can be handled by a method in the target

interface.

5.1 Mathematical basics

As in section 3.1, we can define an interface adapter graph, which is a directed

graph where interfaces are nodes and adapters are edges. We also assume that

a method accepts only a single argument: multiple arguments can be modeled

as a tuple with multiple components [70], while no argument can be modeled

by a dummy argument.

For each method in an interface, its argument domain is divided up into

disjoint domains that are each represented by abstract values. For example,

integer arguments could be mapped to abstract values d+, d−, and d0. These

domains and abstract values must be fixed for each method in an interface,

and they must not be different for different interface adapters. The chaining

of interface adapters cannot be analyzed otherwise.

There is a special abstract value denoted by ⊥ distinct from any other

62

abstract value, which is used when a method is unable to handle any other

abstract value, i.e. when a method cannot handle any arguments. Including ⊥
in the set of all possible abstract values for a method can be considered lifting

the set [50], and we call this lifted set the abstract argument domain for the

method.

5.1.1 Method dependencies

To represent how methods in a source interface are used to implement a method

in a target interface, including which arguments must be used for the methods

in the source interface to handle an argument for the method in the target

interface, we use a function-based approach. Functions are represented with

a set-theoretic approach [51], where a function is a set of pairs of arguments

and values.

Let there be an interface adapter A with source interface IS and target

interface IT . Let Di be the abstract argument domain of method i in IS, and

let D′j be the abstract argument domain of method j in IT . If IS has n methods

and IT has n′ methods, then we can define the abstract dependency function hA

for A:

hA : D1 ×D2 × · · · ×Dn → 2D′
1 × 2D′

2 × · · · × 2D′
n′

where the jth component in a result tuple is the set of all possible abstract

values that can be handled by method j in the target interface given the

specified abstract values accepted by the methods in the source interface. If

a method is unavailable in the source interface or it is unable to handle any

arguments, then its corresponding abstract value in the argument to hA would

be ⊥. All components in the result tuple include ⊥ so that chained interface

adapters can be analyzed even when certain methods end up being unavailable.

We also define a method availability vector p for the abstract interpretation

approach. It is simply a tuple of sets with type 2D1×2D2×· · ·×2Dn , assuming

there are n methods and Di is the abstract argument domain for method i.

63

It represents the abstract values that each method is able to handle, and it

is not intrinsic to an interface or interface adapter. Instead, it expresses how

well interface adaptation is done.

In the following, we will use the shorthand ∪ for the “union” of two tuples,

in which the result is a tuple with the same number of components, and each

component is the union of the corresponding components in the arguments. In

other words, [S1, . . . , Sn] ∪ [S ′1, . . . , S
′
n] = [S1 ∪ S ′1, . . . , Sn ∪ S ′n]. The “indexed

union” of tuples is a straightforward extension of the shorthand. We will also

denote the Cartesian product of the components of a tuple of sets with the

prefix ×. In other words, ×[S1, . . . , Sn] = S1 × · · · × Sn.

If an interface adapter A with abstract dependency function hA were to be

used to convert an source interface IS to target interface IT , where the method

availability vector for IS is p, then it is easy to see that each component of the

resulting method availability vector q should be:

q =
⋃

x∈(×p)

hA(x) (5.1)

Basically, each component of q should be the union of all possible abstract

values for the corresponding method as adapted from p through hA.

It would be more convenient to simply apply a function to a method avail-

ability vector, and this can easily be done by defining an abstract adaptation

function fA corresponding to an abstract dependency function hA based on

equation (5.1), where D1, . . . , Dn are the abstract argument domains for the

source interface of the adapter:

fA = {(X,
⋃
x∈X

hA(x)) |X ⊆ D1 × · · · ×Dn} (5.2)

Obviously, constructing an abstract dependency function for an interface

adapter is easier than constructing an abstract adaptation function, so it would

be expected that the abstract dependency function is constructed first, and

then the abstract adaptation function is constructed from this, after which the

64

abstract adaptation function would be used to analyze interface adapter chains.

We will denote the abstract adaptation function of an interface adapter A by

depend(A).

Now that we have defined the abstract adaptation function, defining the

adaptation operator is simple: it is simply function application. In fact, we

will not use special notation to represent the operator and will just use the

standard notation:

fA(p)

Unlike in chapter 3 or chapter 4, there is no need to define something

like a dummy method since an adaptation dependency function is general

enough to encompass cases which are ambiguous in the other approaches. If a

method in a target interface can always be implemented, then the appropriate

abstract value results can be specified for an argument of [⊥, . . . ,⊥], whereas

if a method can never be implemented, then [{⊥}, . . . , {⊥}] can be returned

as the result.

We denote a method availability vector for an interface I to a fully func-

tional service by 1I , where each set in the tuple includes the entire abstract

argument domain for the corresponding method.

5.1.2 Adapter composition

As in section 3.1.2, we would like to be able to derive a composite abstract

adaptation function from the composition of two abstract adaptation functions,

which would be equivalent to describing the chaining of two interface adapters

as if they were a single interface adapter.

For the abstract interpretation approach, this is very straightforward be-

cause the abstract adaptation function is a function: the composition is just

function composition. And function composition is well known to be asso-

ciative [73], although not commutative in general. In fact, we will use the

65

standard notation for abstract adaptation function composition:

fA′ ◦ fA

We can also show a monotonicity property similar to equation (3.4), which

formalizes the notion that extending an interface adapter chain results in worse

adaptation loss. If A1 and A2 are interface adapters, where A1 converts I1 to

I2 and A2 converts I2 to I3, with fA1 = depend(A1) and fA2 = depend(A2),

and hA1 and hA2 are the adaptation dependency functions associated with fA1

and fA2 , respectively, then:

fA2(z) =
⋃

x∈(×z)

hA2(x) ⊆
⋃

x∈(×1I2
)

hA2(x) = fA2(1I2)

∴ (fA2 ◦ fA1)(1I1) ⊆ fA2(1I2) (5.3)

with the shorthand that the “subset” relationship for tuples denotes each cor-

responding component satisfying the subset relationship, i.e. [S1, . . . , Sn] ⊆
[S ′1, . . . , S

′
n] denotes S1 ⊆ S ′1 ∧ · · · ∧ Sn ⊆ S ′n.

The definitions of the abstract adaptation function, the abstract depen-

dency function, and the method availability vector in section 5.1.1, along with

the associativity and monotonicity rules proven in this section, provide a suc-

cinct way to mathematically express the chaining of lossy interface adapters

using an abstract interpretation approach.

5.1.3 An example

As an example, we apply the abstract interpretation approach to the interfaces

and adapters in figure 1.2. The abstract argument domains for each method

in each interface must be determined manually based on a human-level under-

stading of the interfaces, not only considering a natural division of arguments

but also anticipating divisions relevant to potential interface adapters. Ta-

ble 5.1 contains an example of how the abstract argument domains could be

defined for figure 1.2.

66

Interface Method Abstract values

Video1
playVideo MOV, AVI, MKV

playAudio MP3, OGG, WAV

Video2

play INDEO, MP4, THEORA, DIVX

stop DUMMY

skip INTEGER

caption LANGUAGE

Video3

play MOV, AVI, MKV, RM

getVolume DUMMY

setVolume INTEGER

setEqualizer EQSPEC

Audio
play AU, WAV, OGG

adjustAudio VOLUME, EQUALIZER, MIXED

Table 5.1: Example abstract argument domains for figure 1.2.

For interface adapter Video1toVideo2, the playAudio method in Video1 is

not required to implement any of the methods, while stop, skip, and caption

methods in Video2 cannot be implemented using the methods of Video1. Let

us say that playVideo of Video1 can handle MOV files, which can contain video

encoded in MP4, AVI files, which can contain video encoded in INDEO and

DIVX, and MKV files, which can contain video encoded in MP4, DIVX, and

THEORA. Then we would have an abstract dependency function with tuples

as specified in table 5.2. The abstract dependency function has 16 elements,

while the abstract adaptation function has 24 × 24 = 256 elements, which we

do not show here.

From the adaptation dependency function in table 5.2, it is easy to see that

with the interface adapter Video1toVideo2, an argument for play in Video2

that corresponds to abstract value MP4 can be handled if playVideo in Video1

can handle an argument that corresponds to abstract values MOV or MKV. If f

67

((⊥,⊥), ({⊥}, {⊥}, {⊥}, {⊥}))
((⊥,MP3), ({⊥}, {⊥}, {⊥}, {⊥}))
((⊥,OGG, ({⊥}, {⊥}, {⊥}, {⊥}))
((⊥,WAV), ({⊥}, {⊥}, {⊥}, {⊥}))

((MOV,⊥), ({⊥,MP4}, {⊥}, {⊥}, {⊥}))
((MOV,MP3), ({⊥,MP4}, {⊥}, {⊥}, {⊥}))
((MOV,OGG), ({⊥,MP4}, {⊥}, {⊥}, {⊥}))
((MOV,WAV), ({⊥,MP4}, {⊥}, {⊥}, {⊥}))

((AVI,⊥), ({⊥, INDEO,DIVX}, {⊥}, {⊥}, {⊥}))
((AVI,MP3), ({⊥, INDEO,DIVX}, {⊥}, {⊥}, {⊥}))
((AVI,OGG), ({⊥, INDEO,DIVX}, {⊥}, {⊥}, {⊥}))
((AVI,WAV), ({⊥, INDEO,DIVX}, {⊥}, {⊥}, {⊥}))

((MKV,⊥), ({⊥,MP4,DIVX,THEORA}, {⊥}, {⊥}, {⊥}))
((MKV,MP3), ({⊥,MP4,DIVX,THEORA}, {⊥}, {⊥}, {⊥}))
((MKV,OGG), ({⊥,MP4,DIVX,THEORA}, {⊥}, {⊥}, {⊥}))
((MKV,WAV), ({⊥,MP4,DIVX,THEORA}, {⊥}, {⊥}, {⊥}))

Table 5.2: Elements in an example abstract dependency function.

68

is the corresponding abstract adaptation function and the method availability

vector is p = [{⊥,MOV,MKV}, {⊥,MP3}], then

f(p) = [{⊥,MP4,DIVX,THEORA}, {⊥}, {⊥}, {⊥}]

which shows that with interface adaptation to Video2, play would be able to

handle arguments corresponding to MP4, DIVX, and THEORA, while the

stop, skip, and caption methods would not be available.

For the other interface adapters, the adapters Video2toVideo3, Video3to-

Audio, and Video3toVideo1 have 40 elements in their abstract dependency

functions and 2048 elements in their abstract adaptation functions, while the

adapters Video1toAudio and AudiotoVideo3 have 16 elements in their abstract

dependency functions and 256 elements in their abstract adaptation functions.

5.2 Complexity

The abstract interpretation approach can easily encompass the discrete ap-

proach of chapter 3 by having each method accept only a single abstract value

besides ⊥. However, this does not mean that the optimal adapter chaining

problem, where the number of accepted abstract values is maximized, is NP-

complete. The reason is that the reduction of a method dependency matrix in

the discrete approach to an abstract adaptation function in the abstract inter-

pretation approach can require exponential time. In fact, simply storing the

abstract adaptation function can require an exponential amount of memory.

In the discrete and probabilistic approaches of chapters 3 and 4, represent-

ing a method dependency matrix or a probabilistic adaptation factor requires

O(m2) space, where m is the maximum number of methods in an interface.

Applying the adaptation or composition operators would require O(m2) or

O(m3) time. However, since the abstract interpretation approach requires

that functions be represented as a set of tuples to retain generality, it requires

69

O(dm) space to represent an abstract dependency function and O(2dm) space

to represent an abstract adaptation function. Recall that an abstract argu-

ment domain must include ⊥ in addition to a separate abstract value, so d is

necessarily greater than or equal to 2, thus this is a truly exponential bound.

In fact, the exponential space complexity is a lower bound, not just an

upper bound. With exactly m methods in a source interface and with d1, d2,

. . . , dm abstract values in the abstract argument domains for each method, the

number of tuples in the abstract dependency function is exactly
∏m

i=1 di, and

the number of tuples in the abstract adaptation function is exactly
∏m

i=1 2di .

We can see this in the example of section 5.1.3.

With complex interfaces that have many methods and non-trivial abstract

argument domains, the exponential space complexity of the abstract interpre-

tation approach makes it unlikely to be used in a system not dedicated to

analyzing lossy interface chains which lacks the correspondingly exponential

amount of memory. It is an open question whether real world interfaces will

be trivial enough such that the abstract interpretation approach can be used

more generally.

5.3 A greedy algorithm

While the exponential complexity of the abstract interpretation approach might

make it unfeasible to obtain an optimal adapter chain on demand in a resource-

constrained interactive system and virtually impossible to analyze complex

interface adapters, it may be a slow but useful tool for software architecture

analysis to derive an optimal adapter chain with simple interface adapters. So

we describe an algorithm which can construct an optimal interface adapter

chain in algorithm 7, which works thanks to the monotonicity property in

equation (5.3).

Just as algorithm 1 can be extended to algorithm 3 to support behavior

70

Algorithm 7 Adapter chaining algorithm with abstract interpretation.

procedure Prob-Greedy-Chain(G = (V,E), s, t)

C ← {[]} . chains to extend

M = ∅ . discarded chains

D ← {[] 7→ Idim(1T)} . method dependency matrixes

while C 6= ∅ do

c← element of C maximizing Count-Abstract(c,D)

if c 6= [] ∧ source(c[1]) = s then

return c

else if no acyclic chain not in C ∪M extends c then

C ← C − {c}
M ←M ∪ {c}

else

if c = [] then

B ← {[e] | e ∈ E, target(e) = t}
else

B ← {e : c | e ∈ E, target(e) = source(c[1])}
end if

remove cyclic chains from B

C ← C ∪B
D ← D ∪ {e : c 7→ D[c] ◦ depend(e) | e : c ∈ B}

end if

end while

end procedure

71

Algorithm 8 Computing number of accepted abstract values.

function Count-Abstract(c, D)

s← source(c[1])

v ← D[c](1s)

return sum of count of abstract values in each component of v

end function

similar to service discovery by checking whether the current source is among

a potential set of source interfaces instead of just checking against one, algo-

rithm 7 can be similarly extended. Abstract values that represent arguments

can also be similarly weighted to prioritize what needs to be adapted.

72

6. Web of interface adapters

The approaches described so far use only a single interface adapter to adapt

a given target interface from a source interface, and interface adapters can be

combined only as a singly-linked chain. These approaches force us to choose

among imperfect chains of interface adapters, where one chain might be able to

adapt certain methods in the source interface but cannot adapt other methods

covered by another chain, and vice versa. However, using a web of interface

adapters, a directed acyclic interface adapter graph where different adapters

can be used to adapt different methods in an interface, can cover all methods

that can possibly be adapted, incurring minimum loss.

6.1 Mathematical basics

The mathematical basics for this chapter extends the discrete approach de-

scribed in section 3.1. As before, a method availability vector expresses the

result of interface adaptation, while a method dependency matrix describes

the adaptation behavior of a single interface adapter.

However, we will not use the method dependency matrix directly. Instead,

we define a method dependency set, which is a set of method dependency

matrixes with the same source interface and target interface. It is used to

express the alternate paths through which a method may be adapted. The

method dependency set for an actual interface adapter would be the singleton

set with the method dependency matrix for the adapter, and we denote the

method dependency set associated with an adapter A as depend(A).

Given a method dependency set S and method availability vector pi, the

adaptation operator ⊗ for a method dependency set applied to a method

73

availability vector is defined as:

S ⊗ pi =
∨

aji∈S

(aji ⊗ pi) (6.1)

Basically, a method in the target interface is available if any of the alternate

interface adapters can provide it from the methods in the source interface. We

also follow the rules for a dummy method as in section 3.1.1.

Given two method dependency sets S and S ′, the composition operator ⊗
can be defined as:

S ′ ⊗ S = {bkj ⊗ aji | bkj ∈ S ′ ∧ aji ∈ S} (6.2)

If two method dependency sets have the same source and target interfaces,

then an equivalent method dependency set that merges them together is simply

their union. We can define a merge operator⊕, which is obviously commutative

and associative:

S ′ ⊕ S = S ′ ∪ S (6.3)

A similar monotonicity property to equation (3.4) also holds. If A1 and

A2 are interface adapters, where A1 converts I1 to I2 and A2 converts I2 to

I3, with S = depend(A1) and S ′ = depend(A2), then for pk = S ′ ⊗ 1′I2 and

p′k = S ′ ⊗ S ⊗ 1′I1 , using equations (6.1) and (3.4):

p′k → pk (6.4)

6.2 Web of lossy adapters

Algorithm 9 can construct a web of interface adapters that can cover all pos-

sible methods in a target interface given a fully functional source interface,

which we will refer to as a maximally covering web of interface adapters. It is

based on unit propagation for Horn formulae [15], targeted towards building a

web of interface adapters. It works in two phases, where it first computes all

74

methods in all interfaces that can be adapted given the source interface, and

then extracts only the subgraph relevant for the target interface. Algorithms

10 and 11 are subalgorithms responsible for setup and subgraph extraction,

respectively.

Algorithm 9 Constructing maximally covering web of interface adapters.

function Maximal-Cover(G, s, t)

(Q,D, S,M,C)← Cover-Setup(G, s)

while Q is not empty do

extract (I, i) from Q

for (A = (I, I ′), j) ∈M [I][i] do

if C[A][j] > 0 then

C[A][j]← C[A][j]− 1

if C[A][j] = 0 then . adaptation viable

D[I ′][j]← D[I ′][j] ∪ {A}
if not S[I ′][j] then

S[I ′][j]← true

insert (I ′, j) into Q . trigger new dependent

end if

end if

end if

end for

end while

return (Cover-Subgraph(D, t), D)

end function

Simply constructing a web of interface adapters is not the goal by itself, of

course. The real goal is to use the interface adapters to adapt methods from

a source interface into those of a target interface. Choosing which adapters

should be used for which methods is more complex than in the case for a single

chain, where there is no choice at all. Algorithm 12 is an abstract algorithm for

75

Algorithm 10 Setup for constructing maximal covering.

function Cover-Setup(G = (V,E), s)

Q← empty queue

for I ∈ V and method i of I do

D[I][i]← ∅ . list of viable adapters

S[I][i]← false . whether satisfiable

M [I][i]← ∅
for A = (I, I ′) ∈ E do

M [I][i]←M [I][i] ∪ {(A, j) | depend(A)ji} . dependents

end for

end for

for A = (I1, I2) ∈ E and method j of I2 do

C[A][j]← |{i | depend(A)ji}| . unsatisfied dependency count

end for

for each method i of s do . start with source interface

S[s][i] = true

insert (s, i) into Q

end for

return (Q,D, S,M,C)

end function

76

Algorithm 11 Extract subgraph comprising web of interface adapters.

function Cover-Subgraph(D, t)

V ′ ← ∅, E ′ ← ∅
Q← empty queue, Q′ ← ∅
for method i of t do

insert (t, i) in Q and Q′

end for

while Q is not empty do

extract (I ′, j) from Q

V ′ ← V ′ ∪ {I ′}
E ′ ← E ′ ∪D[I ′][j]

for A = (I, I ′) ∈ D[I ′][j] do

for i such that depend(A)ji do

if (I, i) 6∈ Q′ then

insert (I, i) into Q and Q′

end if

end for

end for

end while

return (V ′, E ′)

end function

77

determining which interface adapters should be invoked when adapting each

method. It needs more information than just the web of interface adapters,

which is provided by the value D also returned in algorithm 9.

The interface adapters used to adapt a given method are specified by al-

gorithm 12; the concrete steps involved in actually adapting a method are left

to how interface adaptation is actually done, whether it be direct invocation

by the interface adapter, call substitution after constructing the call graph,

or composition of interface adapters specified in a high-level language. The

exact criterion for selecting an adapter in algorithm 12 also does not affect the

correctness of the algorithm.

Algorithm 12 Adapting a specific method in the target interface.

procedure Adapt-Method(D, s, t, m)

if D[t][m] = ∅ then

adaptation not possible

else

Recursive-Adapt(D, s, t, m, {t})
end if

end procedure

procedure Recursive-Adapt(D, s, I, m, V)

if I = s then

return

end if

select A = (I ′, I) ∈ D[I][m] where I ′ 6∈ V
for method i in I ′ where depend(A)mi do

Recursive-Adapt(D, s, I ′, i, V ∪ {I ′})
end for

adapt method m in interface I using A

end procedure

78

playVideo
controlVolume

Video1

play
stop

Video2

play
volume

Video3

play
setVolume

Audio

Figure 6.1: An example interface adapter graph.

Algorithm 9 constructs a maximally covering web of adapters, but it com-

pletely ignores the number of interface adapters it incorporates in the web.

It could end up constructing a web with hundreds of interface adapters when

less than a dozen would do. However, trying to minimize the number of in-

corporated interface adapters is an NP-complete problem as we will show in

section 6.4. Invoking the minimum number of interface adapters while actually

adapting a method also turns out to be NP-complete.

6.3 An example

As an example, we apply the web of adapters approach to the interface adapter

graph in figure 6.1. Video1, Video2, and Video3 are interfaces capable of

playing back video, while Audio is an interface capable of playing back only

audio. Video1, Video3, and Audio support volume control, but Video2 does

not. The interface adapter from Video1 to Audio does not even attempt to

adapt the playback method.

Let us say that we have a fully functional service conforming to interface

Video1, and we wish to access it through interface Video3. With a singly-linked

chain approach, there can only be an interface adapter chain from Video1 to

Video3 either via Video2 or via Audio. If the chain goes through Video2, then

79

the play method in Video3 can be provided but not the volume method, while

if the chain goes through Audio, then the volume method can be provided but

not the play method.

With the web of adapters approach, on the other hand, both methods in

Video3 can be provided by using both chains of interface adapters. The play

method of Video3 can be adapted from play of Video2 which in turn is adapted

from playVideo of Video1, and the volume method of Video3 can be adapted

from setVolume of Audio which in turn is adapted from controlVolume of

Video1. It should be noted that if the interface adapters store state, then

using different adapters for different methods might cause problems, although

this should not be an issue for the example of figure 6.1.

If aji, bkj, cji, dkj are the method dependency matrixes for the interface

adapters from Video1 to Video2, from Video2 to Video3, from Video1 to

Audio, and from Audio to Video3, respectively, then they would be:

aji =

t f f

f t f

t f f

bkj =

t f f

f t f

t f f

cji =

t f f

t f f

f f t

dkj =

t f f

t f f

f f t

and the respective method dependency sets A, B, C, and D would be {aji},
{bkj}, {cji}, and {dkj}. We can then compute the loss from the web of adapters

80

approach as applied to figure 6.1:

((B ⊗ A)⊕ (D ⊗ C))⊗ 1′Video1 = [f, t, t]

which agrees with our reasoning that all actual methods in Video3 can be

adapted from Video1 using the web of adapters approach.

6.4 Minimizing number of adapters

While algorithm 9 can construct a maximally covering web of interface adapters

in polynomial time (O(m2) being a loose time bound with a straightforward

implementation, where m is the total number of methods), it is unlikely there

will be a polynomial-time algorithm for finding a maximally covering web of

adapters with the minimum number of interface adapters. This is because the

problem is NP-complete, which we will prove with a reduction from one-in-

three 3SAT [24].

We formally define MINWEB as the problem of whether there is a web of

interface adapters in an interface adapter graph from a given source interface

to a given target interface such that it is maximally covering and has at most

K interface adapters. Given a candidate boolean expression for one-in-three

3SAT with c clauses and v variables, we will reduce it to a candidate interface

adapter graph for MINWEB such that the boolean expression is an instance of

one-in-three 3SAT if and only if there is a maximally covering web of interface

adapters with at most v + 2c adapters.

For each variable, we create an interface with methods corresponding to all

the literals, two for each variable. For each clause, we create an interface with

only a single method. We also separately create a source interface with meth-

ods corresponding to the possible literals and a target interface with methods

corresponding to the clauses.

Starting from the source interface, we connect the interfaces corresponding

to variables serially. Between each of these interfaces, we define two adapters,

81

one which makes the method corresponding the successor variable true and

the other which makes it false, by making the method corresponding to the

positive literal available and the method corresponding to the negative literal

unavailable in one adapter and the opposite in the other adapter. Other literals

are left alone.

From the sink node of the variable handling subgraph, we create three

adapters to each of the interfaces corresponding to the clauses. Each adapter

corresponds to a literal in the clause, and the sole method in the interface is

available only if the method corresponding to the literal is available. And from

each interface corresponding to a clause, there is a single adapter to the target

interface for the entire graph which makes the method corresponding to the

clause available only if the sole method in the clause interface is available.

For the graph constructed this way, the entire graph is obviously maximally

covering with 2v+4c adapters and all methods available at the target interface.

If the original boolean expression is an instance of one-in-three 3SAT, then a

satisfying assignment can specify a singly-linked path through the variable

interfaces, followed by each true literal specifying the adapters to pass through

to each clause interface, followed by the adapters to the target interface, and

the resulting directed acyclic graph is a maximally covering web of adapters

with v+2c adapters, since all methods will be available at the target interface.

Conversely, if there is a maximally covering web of adapters with v + 2c

adapters, then 2c adapters connect to the clause interfaces since all clause in-

terfaces must be included. The remaining v adapters must be a singly-linked

path through the variable interfaces, and the selection of adapters for each

variable interface specifies a variable assignment which satisfies the original

boolean expression with only one true literal in each clause. Therefore MIN-

WEB is NP-complete, and we can also conclude that minimizing the number

of required adapters to adapt a single method is also NP-complete by removing

the other methods in the target interface.

82

7. Discussion

We have described various approaches to analyzing the loss in interface adapter

chaining. We first began with a discrete approach in chapter 3 where method

dependencies are simply boolean. We then moved on to probabilistic and ab-

stract interpretation approaches in chapter 4 and chapter 5, respectively, where

method dependencies are no longer boolean but partial. Another direction was

taken in chapter 6, where instead of just chaining interface adapters we allowed

them to form directed acyclic graphs. Each framework has their strengths and

weaknesses in terms of simplicity, performance, precision, flexibility, etc., mak-

ing them suitable for different application domains.

While the discrete approach is much more precise than naively assigning a

cost to an interface adapter, it considers a method as an indivisible unit and

does not take into account methods that may only be partially adapted, i.e.

a method which cannot accept all valid arguments. However, it is much more

simpler to infer the necessary method dependencies. In fact, this is akin to

what is required in many dependency analysis problems [17, 23, 44, 63], and

code analysis techniques can be used to automatically extract the required

method dependencies [7, 62].

The discrete approach only allows for singly linked chains of interface

adapters. While this would often not be able to minimize loss as much as the

web of adapters approach would be able to, the fact that only a single inter-

face adapter is used to adapt a source interface to a subsequent target interface

makes it much simpler to use interface adapters which maintain state. Interface

adapters which must adapt the protocol and not just the method signatures

require state, so it is easier to use the discrete approach along with approaches

where the interface adapter adjusts protocol behavior [16, 37, 52, 54, 77].

83

Experimental results also suggest that the discrete approach is reasonably

fast enough such that it can be used for adapting interfaces on demand [42].

This all suggests that the discrete approach is best applicable when most meth-

ods are perfectly adapted if they are adapted at all, when nothing more than

code analysis is desired for extracting method dependencies, when interface

adapters must maintain state to also adapt behavior, and a reasonably fast

response for interface adaptation is required.

The probabilistic approach is more precise than the discrete approach,

being able to model partially adapted methods. It also only allows singly

linked chains of interface adapters, so it should be able to incorporate inter-

face adapters with state with little problem. The general structure is similar to

the discrete approach, having similar computational complexity, so it should

generally be slower than the discrete approach by only a constant factor.

However, the probabilistic approach assumes the independence assump-

tions in section 4.1.1 hold, and it is an open question how closely the inferred

probabilities would fit the actual behavior of non-trivial interfaces and inter-

face adapters in the real world. Obtaining the necessary probabilities is also

not as simple as getting the method dependencies in the discrete approach.

It is likely that some sort of time-consuming program tracing [2, 36, 39, 75]

would be required to obtain the probabilities.

This would suggest that the probabilistic approach would be best suitable

when partial method adaptation occurs such that the independence assump-

tions of section 4.1.1 are reasonably valid, when interface adapters must main-

tain state to also adapt behavior, and a reasonably fast response for interface

adaptation is required. It has the drawback that quite a bit of effort would be

required to obtain the necessary probabilities, however.

The abstract interpretation approach can be the most precise, not hav-

ing to rely on questionable assumptions as with the probabilistic approach.

However, it does rely on abstract argument domains being properly defined

84

for every method in every interface. An improperly set up abstract argument

domain would require a great deal of effort to update related data structures

appropriately, and sometimes it might not be easy to define an abstract ar-

gument domain which would work well with every conceivable interface and

interface adapter.

A much more serious problem with the abstract interpretation approach is

its complexity. It has exponential space complexity, which means a prohibitive

amount of memory may be required. Even worse, it requires exponential effort

to set up the necessary values, which for even moderately complex interface

adapters might be infeasible to do automatically by computer, much less by

a human developer. And the necessary functions have to be constructed by a

human developer unless sophisticated program analyses can be developed that

could automatically define abstract argument domains and infer how interface

adapter code will adapt them.

The exponential complexity of the abstract interpretation approach sug-

gests that it should be used for offline analysis of simple interface adapter

chains. The better precision may be useful when determining if a set of in-

terface adapters shipped with a deployment of a ubiquitous computing envi-

ronment can satisfactorily support seamless operation. However, the abstract

interpretation approach may still be practical as a subsystem if the number of

methods and the size of abstract argument domains are small: it is an open

question of whether they would be small enough in real world systems.

The web of adapters approach has the same precision as the discrete ap-

proach, but the adaptation loss can be reduced to the absolute minimum pos-

sible. By using alternate interface adapters as needed, this minimum can be

even smaller than the minimum loss that can be achieved in the discrete ap-

proach. However, allowing alternate interface adapters also makes it difficult

to use interface adapters which maintain state. It also makes the implementa-

tion of interface adapters more complex, since they must be able to consider

85

Framework Setup Precision Space Statefulness

Discrete simple boolean polynomial compatible

Probabilistic moderate fuzzy polynomial compatible

Abstract complex sharp exponential compatible

Web simple boolean polynomial stateless

Table 7.1: Comparison of mathematical frameworks.

alternates when other interface adapters must be invoked.

The algorithms for the web of adapters approach should be reasonably fast.

This suggests that it is best suited when all interface adapters are stateless

in a system where on demand interface adaptation is required. However, the

increased complexity required in the implementation of interface adapters may

make the approach unattractive for an interface adaptation system.

Table 7.1 organizes the strengths and weaknesses of each approach dis-

cussed above in a succinct manner.

7.1 A case study

While we have shown examples loosely based on figure 1.2 for each of the

mathematical frameworks in their corresponding chapters, in this section we

will describe at a high level how the frameworks can be applied to a set of

interfaces based on actual web services. Figure 7.1 shows six interfaces for

actual payment processing web services, along with eight hypothetical interface

adapters represented as arrows from source interfaces to target interfaces. We

will discuss the situation where an application only knows how to use the

interface for PayPal, but the only payment processing service actually available

conforms to the interface for Moneybookers.

For the interfaces of figure 7.1, XWebCheckOut and Google Checkout are

not able to support recurring payments, while the interfaces can. Among the

86

GetAllPricingPlans
GetSinglePricingPlan
GetAllCustomers
GetSingleCustomer
CreateNewCustomer
UpdateCustomerAndSubscription
UpdateCustomerOnly
UpdateSubscriptionOnly
DeleteACustomer
CancelCustomerSubscription
AddItemQuantity
RemoveItemQuantity
SetItemQuantity
AddCustomChargeCredit

CheddarGetter

AddressVerify
BillOutstandingAmount
CreateRecurringPaymentsProfile
DoAuthorization
DoCapture
DoDirectPayment
DoExpressCheckoutPayment
DoNonReferencedCredit
DoReauthorization
DoReferenceTransaction
DoVoid
GetBalance
GetBillingAgreementCustomerDetails
GetExpressCheckoutDetails
GetRecurringPaymentsProfileDetails
GetTransactionDetails
ManageRecurringPaymentsProfileStatus
ManagePendingTransactionStatus
MassPayment
RefundTransaction
SetCustomerBillingAgreement
SetExpressCheckout
TransactionSearch
UpdateRecurringPaymentsProfile

PayPal

charge-order
refund-order
cancel-order
authorize-order
ship-items
backorder-items
return-items
cancel-items
reset-items-shipping-information
add-merchant-order-number
send-buyer-message
process-order
deliver-order
add-tracking-data
add-merchant-order-number
send-buyer-message
archive-order
unarchive-order

Google Checkout

Cancel
CancelToken
GetTokenByCaller
GetTransactionStatus
Pay
Refund
Reserve
Settle

Amazon FPS LOADORDER
PROCESSORDER
ADDORDER
UPDATEORDER
DELETEORDER
PROCESSPAYMENTLSPG
PROCESSPAYMENTCYBERSOURCE
LOADBASKETS
LOADBASKETSPAGED
LOADRECEIPTS
LOADRECEIPTSBYSHOPPER
LOADRECEIPTSBYSHOPPERPAGED

XWebCheckOut

AuthorizePayment
ExecuteTransfer
RepostStatus
TransactionStatus
AccountHistory
CancelRecurringPayment
RecurringPaymentStatus
ExtendingRecurringPayment
CancelOnDemandPayment
OnDemandPaymentStatus
PrepareOnDemandPayment
RequestOnDemandPayment
AuthorizeRefund
ExecuteRefund
CheckEmail

Moneybookers

Figure 7.1: Example interface adapter graph with payment interfaces.

87

class MoneybookersToXWebCheckOutAdapter extends XWebCheckOut {

private Moneybookers source;

...

public void PROCESSPAYMENTLSPG(Order order) {

source.AuthorizePayment(convertOrder(order));

source.ExecuteTransfer(convertOrder(order));

}

}

Figure 7.2: Example code snippet for interface adapter.

remaining interfaces, CheddarGetter is only capable of supporting recurring

payments and cannot support one-time payments. PayPal, Moneybookers,

and Amazon FPS are all capable of supporting both one-time payments and

recurring payments. Amazon FPS also supports multi-use payment tokens,

which is something that can be purchased once and used multiple times for

getting multiple products at different times. It should be apparent that perfect

interface adaptation is not possible among these interfaces.

With the exception of the web of adapters approach, a Java code snippet of

the interface adapter from Moneybookers to XWebCheckOut could look some-

thing like what is shown in figure 7.2. In the code snippet, the interface adapter

uses the AuthorizePayment and ExecuteTransfer methods of Moneybookers to

implement the PROCESSPAYMENTLSPG method of XWebCheckOut.

We will discuss how the different approaches to analyzing lossy interface

adapter chaining can be applied to this example, which should illustrate their

differences.

88

Discrete approach

As we discussed for the discrete approach, it is very easy to infer the method

dependencies simply by inspecting the code for an interface adapter. For exam-

ple, we can immediately see that providing the PROCESSPAYMENT method

of XWebCheckOut depends on the AuthorizePayment and ExecuteTransfer

methods being available in the code snippet of figure 7.2. In fact, this pro-

cess can be completely automated by analyzing source or binary code for the

interface adapter, so deriving the method dependency matrix for an interface

adapter requires very little effort from a developer.1

Once the method dependency matrixes are derived, we can apply section 3.1

to analyze how well an interface adapter chain can adapt the interface for

Moneybookers to PayPal. For instance, the interface adapter chain that goes

through Moneybookers, XWebCheckOut, Google Checkout, and PayPal could

provide the 5 methods DoAuthorization, DoDirectPayment, DoExpressCheck-

outPayment, DoNonReferencedCredit, and DoReferenceTransaction. The in-

terface adapter chain through Moneybookers, Amazon FPS, CheddarGetter,

and PayPal could provide the 3 methods CreateRecurringPaymentsProfile,

GetRecurringPaymentsProfileDetails, and UpdateRecurringPaymentsProfile,

as shown in figure 7.3.

Using algorithm 1 of section 4.3 can give us the optimal interface adapter

chain that maximizes the number of methods that can be provided in the

interface for PayPal from the interface for Moneybookers. In this example, the

optimal interface adapter chain could go through Moneybookers, Amazon FPS,

Google Checkout, and PayPal, which can provide the 7 methods DoAuthor-

ization, DoDirectPayment, DoExpressCheckoutPayment, DoNonReferenced-

Credit, DoReferenceTransaction, DoVoid, and RefundTransaction.

1Things become hard again when reflection [19] is used, but this could be dealt with by

conservatively assuming that all methods in the source interface are necessary on the rare

occasion reflection is used by an interface adapter.

89

PayPal

Google Checkout

Amazon FPS

CheddarGetter

XWebCheckOut

Moneybookers

makes available:
CreateRecurringPaymentsProfile
GetRecurringPaymentsProfileDetails
UpdateRecurringPaymentsProfile

Figure 7.3: Example of loss analysis with discrete approach.

90

Probabilistic approach

Compared to the discrete approach, it is significantly harder to fill in the

probabilities that are required by the conversion probability matrixes of the

interface adapters. Either a developer must estimate all of the probabilities,

e.g. estimating the probability to be 0.66 when converting an argument for Pay

to AuthorizePayment because Amazon FPS supports one-time, recurring, and

multi-use payments while Moneybookers only supports one-time and recurring

payments, or some sort of program tracing should be done with a large random

sample of arguments to measure the probability that the interface adapter con-

verts an argument properly. The former requires significant developer effort,

while the latter is very time-consuming: either way, they are harder than what

the discrete approach would require.

But once the conversion probability matrixes are obtained, the probabilis-

tic approach can infer results about partial adaptation of methods, something

that the discrete approach is entirely unable to do. For instance, applying sec-

tion 4.1 to the interface adapter chain through Moneybookers, Amazon FPS,

CheddarGetter, and PayPal could show that the 3 methods CreateRecurring-

PaymentsProfile, GetRecurringPaymentsProfileDetails, and UpdateRecurring-

PaymentsProfile can run properly with probability 0.95, 1.0, and 1.0, respec-

tively as shown in figure 7.4, because of slight incompatibilities in the creation

of recurring payments. In contrast, the discrete approach would not be able to

handle such slight incompatibilities at all, making the probabilistic approach

more precise. The greedy algorithm of section 5.3 can be used to maximize

the probability that a method of PayPal runs properly, i.e. minimizing the

probability that an error occurs when a method is invoked on some argument.

91

PayPal

Google Checkout

Amazon FPS

CheddarGetter

XWebCheckOut

Moneybookers

probabilities:
CreateRecurringPaymentsProfile
GetRecurringPaymentsProfileDetails
UpdateRecurringPaymentsProfile
others

0.95
1.00
1.00
0.00

Figure 7.4: Example of loss analysis with probabilistic approach.

92

Abstract interpretation approach

Defining the abstract argument domains for every interface must be done by

a developer and cannot be automated. For instance, it is beyond the capabil-

ities of current computers to understand that arguments to the Pay method

of Amazon FPS can be generally divided into three types of arguments, corre-

sponding to one-time, recurring, and multi-use payments. This must be done

by a human developer who can understand this from the specification and

implementation of the interface.

With such understanding, the developer could infer that the CancelToken

can accept arguments corresponding to recurring and multi-use payments,

which could be represented with the abstract values RECUR and MULTIUSE,

that the Pay method can accept arguments corresponding to one-time, recur-

ring, and multi-use payments, which could be represented with the abstract

values ONCE, RECUR, and MULTIUSE, while the other methods require only

one abstract value besides ⊥.

However, preparing the abstract argument domains is trivial compared to

the preparation of the abstract dependency function. For the interface adapter

from Amazon FPS to CheddarGetter, 768 entries must be filled manually for

the abstract dependency function. It cannot be constructed automatically

since this requires a human level understanding of the interface. This is an

extremely onerous task for a developer, but other interface adapters are even

worse. For the interface adapter from PayPal to Moneybookers, over 16 million

entries must be filled manually, which is completely infeasible. Even if the

abstract dependency function can be created, the abstract adaptation function

would require 281,474,976,710,656 entries: even with a very optimistic estimate

of one byte per entry, this is still more than two hundred terabytes.2

2If there were an interface adapter from OpenGL to DirectX, the abstract dependency

function would require more entries than there are atoms in the Milky Way Galaxy; for the

abstract adaptation function, more entries than there are atoms in the observable universe.

93

PayPal

Google Checkout

Amazon FPS

CheddarGetter

XWebCheckOut

Moneybookers

for method doAuthorization:
one-time payments can be handled
recurring payments cannot be handled

Figure 7.5: Example of loss analysis with abstract interpretation approach.

If the abstract adaptation functions could somehow be constructed despite

these enormous resource requirements, then they might be able to infer precise

results such as the doAuthorization method in PayPal being able to handle ar-

guments corresponding to one-time payments but not arguments corresponding

to recurring payments when an interface adapter chain through Moneybookers,

Amazon FPS, Google Checkout, and PayPal is used as shown in figure 7.5.

Given its precision, the abstract interpretation approach can be useful when in-

terfaces and interface adapters are as simple as the in example in section 5.1.3,

but the approach is infeasible when they are even as moderately complex as

the ones in this case study.

94

Web of adapters approach

With the web of adapters approach, even implementing interface adapters can-

not be as straightforward as is done in figure 7.2. This is because the adapters

used to recursively adapt methods such as AuthorizePayment and Execute-

Transfer must be selected based on information returned by algorithm 9, so

interface adapter implementation must be done quite differently. However, this

is not in any way an insurmountable problem, although the specific details of

how this problem is handled would strongly depend on the general approach

to implementing interface adapters. On the other hand, the web of adapters

approach has the same precision as the discrete approach, so preparing the

method dependency sets should be just as easy.

Using the web of adapters approach, algorithm 9 constructs a maximally

covering web of adapters that includes all interface adapters except for the one

from PayPal to Moneybookers as shown in figure 7.6. In contrast to the discrete

approach, where we must sacrifice providing either the method DoAuthoriza-

tion or the method CreateRecurringPaymentsProfile, the web of adapters ap-

proach allows us to provide both methods, and in fact it could provide the 10

methods DoAuthorization, DoDirectPayment, DoExpressCheckoutPayment,

DoNonReferencedCredit, DoReferenceTransaction, DoVoid, RefundTransac-

tion, CreateRecurringPaymentsProfile, GetRecurringPaymentsProfileDetails,

and finally UpdateRecurringPaymentsProfile. This is less loss than is possible

with the discrete approach.

However, if any of the interface adapters must maintain state to function

properly, then the web of adapters approach should not be used. Otherwise,

the use of different adapters for different methods can result in unexpected be-

havior when a method depends on state being properly maintained by another

method, the latter which could be adapted by another adapter.

95

PayPal

Google Checkout

Amazon FPS

CheddarGetter

XWebCheckOut

Moneybookers

makes available:
DoAuthorization
DoDirectPayment
DoExpressCheckoutPayment
DoNonReferencedCredit
DoReferenceTransaction
DoVoid
RefundTransaction
CreateRecurringPaymentsProfile
GetRecurringPaymentsProfileDetails
UpdateRecurringPaymentsProfile

Figure 7.6: Web of interface adapters for figure 7.1.

96

8. Conclusions

As ubiquitous computing environments become more widespread, a myriad of

different interfaces will be defined for the diverse set of services that will be

developed. Standardization will be unable to keep up with the rapid prolifer-

ation of services, however, so different interfaces will be specified for similar

services. It is not reasonable to expect that software for ubiquitous computing

environment will be able to handle all possible interfaces that may be required

to use a service which serves its demands, not to mention interfaces that are

not even in existence yet, so some form of interface adaptation is required.

Interface adaptation can be achieved by using interface adapters, where an

intermediate entity can transform an unknown interface to a known one. This

approach allows interfaces to be adapted without rewriting software, which is

an option not available when adaptation must occur dynamically. Creating an

interface adapter requires human effort, however, and the quadratic amount

of effort to create all interface adapters necessary for directly transforming

between interfaces makes interface chaining an attractive option.

Unfortunately, it will often be the case that interface adaptation cannot be

done perfectly. This is because interfaces are rarely written with compatibility

with other interfaces in mind. Adaptation loss is to be expected, and even more

so when interface adapters are chained, so interface adaptation should consider

the loss incurred. This is especially so in ubiquitous computing environments,

where it is infeasible to generate code on demand that might possibly fill in

the imperfections or when there is are fundamental incompatibilities due to

limitations in the service.

We have described several mathematical frameworks that can analyze such

adaptation loss incurred by interface adapter chaining. They define a way

97

to represent the adaptation loss using method availability vectors, a way to

represent the adaptation behavior of interface adapters, and the mathematical

operations necessary for analyzing loss. These are then used to construct

algorithms or prove the computational complexity for relevant problems such

as constructing an optimal adapter chain which incurs the minimum loss.

The various mathematical frameworks differ in their precision and graph

structure. The discrete, probabilistic, and abstract interpretation approaches

allow for singly-linked chains of interface adapters and differ by their precision,

with the probabilistic and abstract interpretation approaches being built upon

the discrete approach. The web of adapters approach expands the discrete

approach, allowing interface adapters to form a directed acyclic graph, which

allows more methods to be adapted than can be accomplished by the discrete

approach.

The various approaches have their separate strengths and weaknesses, how-

ever, which make them suitable for different application domains. The discrete

approach is relatively simple to use and has a relatively fast algorithm for con-

structing optimal interface adapter chains, which makes it suitable for interface

adaptation systems that require quick responses. The probabilistic approach

would be useful if the discrete approach is not precise enough, while the web

of adapters approach can be used when interface adapters are stateless. The

increased precision of the abstract interpretation approach comes at the cost of

exponential complexity, which would make it more suitable for offline analysis

of interface adaptation.

Our work in creating mathematical frameworks with which lossy interface

adapter chaining can be analyzed will be a rigorous and sound foundation

upon which interface adaptation systems can be built, where lossy interface

adapters are properly handled so that adaptation loss can be minimized.

98

Directions for future research

This dissertation has focused on the mathematics of analyzing lossy interface

adapter chaining. However, there are several issues when trying to apply any

of the proposed mathematical frameworks to an actual implementation of an

interface adaptation system.

One is the derivation of dependencies from source code or binary software

modules, which would be required to create method dependency matrixes or

conversion probability matrixes. While it is an easy problem with the discrete

approach when the most straightforward method of implementing interface

adapters is used, it may become an issue if more complex approaches to inter-

face adapter implementation are required. It is a much more significant issue

with the probabilistic approach: while testing an interface adapter with a large

random sample of arguments should give the required probabilities, the details

of exactly how this can be done still needs to be worked out.

Another issue when applying the mathematics to an actual implementation

is the optimization of data structures and operations. Having focused on an el-

egant formulation of the lossy interface adapter chaining problem, not so much

attention has been paid to making the data structures as efficient as possible.

In particular, actual interface adapters will likely require only a small number

of methods in a source interface for implementing a specific method in a tar-

get interface, which suggests that a sparse matrix representation can be much

more efficient in practice than a naive implementation of the mathematical

structures in this dissertation.

One last issue relevant to implementation is the efficacy of the probabilistic

approach. It depends on three independence assumptions, so it is an open

question whether the probabilistic approach can give reasonable results for

real systems.

There are also potential areas of further research on the purely theoretical

side. Related to the question about the efficacy of the probabilistic approach,

99

there may be an alternate probabilistic formulation that can also be feasi-

bly applied in practice, but requires weaker and more realistic assumptions

about the behavior of interfaces and interface adapters. Extending the web of

adapters approach so that it can incorporate interface adapters which maintain

state is also an avenue of further research.

The abstract interpretation approach uses a set-theoretic approach to rep-

resenting functions in order to be as general as possible, but this is the cause

of its exponential space complexity. Investigating the existence of special-case

function representations for abstract dependency functions which could repre-

sent almost all realistic cases would be a worthwhile endeavor for reducing the

exponential space complexity of the abstract interpretation approach.

Finally, for the problems we have shown to be NP-complete, it would be of

interest if there were polynomial-time approximation algorithms for construct-

ing optimal interface adapter chains or for minimizing the number of adapters

required in a maximally covering web of interface adapters.

100

요 약 문

손실이 있는 인터페이스 어댑터 체인의
수학적 분석

유비쿼터스 컴퓨팅 환경에서는 물리적 환경에 존재하는 여러 가지 객체에

컴퓨팅 서비스가 내장되어 서로 문제없이 연계하여 동작될 것이다. 다양한

종류의 물리적 객체에 컴퓨팅 서비스가 내장될 수 있기 때문에 기능적으로

비슷한서비스들을이용하기위한다양한인터페이스들이만들어질것이다.

하지만 유비쿼터스 컴퓨팅 환경에서는 인터페이스가 다르더라도 서비스를

이용할 수 있어야 문제없이 서비스들이 연계되어 동작할 수 있다.

이 문제는 인터페이스를 필요에 따라 변환할 수 있는 인터페이스 어댑

터를 이용하여 해결할 수 있다. 여러 개의 인터페이스 어댑터를 연결하면

직접변환을위한모든인터페이스어댑터를개발자가개발해야하는과중된

노력을 피할 수 있다. 하지만 인터페이스 어댑터가 완벽하게 인터페이스를

변환하지못할경우가많을것이며,인터페이스어댑터들을체인으로연결해

사용할 경우는 이 문제가 더욱 중요해질 것이다. 인터페이스 어댑터 체인

을 구성할 때 변환 손실을 제대로 고려하기 위해서는 이러한 체인의 손실을

분석할 수 있는 수학적 바탕이 필요하다.

이 논문에서는 인터페이스 어댑터 체인의 손실을 분석할 수 있는 수학적

바탕을 제시한다. 인터페이스 어댑터 체인의 손실 표현 및 각각 인터페이스

어댑터가 손실에 끼치는 영향을 유추하기 위한 수학적 객체 및 연산을 정의

한다. 이를 이용하여 손실이 있는 인터페이스 어댑터 체인과 관련된 문제를

위한 알고리즘의 작성 및 복잡도 증명을 한다.

101

References

[1] Ken Arnold, editor. The Jini Specifications. Addison-Wesley, 2nd edition,

December 2000. ISBN 978-0-201-72617-6.

[2] Thomas Ball and James R. Larus. Optimally profiling and tracing

programs. ACM Transactions on Programming Languages and Sys-

tems, 16(4):1319–1360, July 1994. doi: 10.1145/183432.183527. URL

http://doi.acm.org/10.1145/183432.183527.

[3] Roberto Barbuti, Roberto Giacobazzi, and Giorgio Levi. A general frame-

work for semantics-based bottom-up abstract interpretation of logic pro-

grams. ACM Transactions on Programming Languages and Systems, 15

(1):133–181, January 1993. doi: 10.1145/151646.151650. URL http:

//doi.acm.org/10.1145/151646.151650.

[4] Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R. Motahari

Nezhad, and Farouk Toumani. Developing adapters for web services in-

tegration. In Proceedings of the 17th International Conference on Ad-

vanced Information Systems Engineering, volume 3520 of Lecture Notes in

Computer Science, pages 415–429, Porto, Portugal, June 2005. Springer-

Verlag. ISBN 978-3-540-26095-0. doi: 10.1007/11431855 29.

[5] J. Bosch. Superimposition: a component adaptation technique. In-

formation and Software Technology, 41(5):257–273, March 1999. doi:

10.1016/S0950-5849(99)00007-5.

[6] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach

to component adaptation. Journal of Systems and Software, 74(1):45–54,

January 2005. doi: 10.1016/j.jss.2003.05.007.

102

http://doi.acm.org/10.1145/183432.183527
http://doi.acm.org/10.1145/151646.151650
http://doi.acm.org/10.1145/151646.151650

[7] A. Brown, G. Kar, and A. Keller. An active approach to characterizing

dynamic dependencies for problem determination in a distributed environ-

ment. In Proceedings of the 2001 IEEE/IFIP International Symposium

on Integrated Network Management, pages 377–390, May 2001. ISBN

0-7803-6719-7. doi: 10.1109/INM.2001.918054.

[8] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the Third Annual ACM Symposium on Theory of Computing,

pages 151–158. ACM Press, 1971. doi: 10.1145/800157.805047.

[9] Patrick Cousot. Program analysis: The abstract interpretation perspec-

tive. ACM Computing Surveys, 28(4es), December 1996. doi: 10.1145/

242224.242433. URL http://doi.acm.org/10.1145/242224.242433.

[10] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni-

fied lattice model for static analysis of programs by construction or

approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pages

238–252. ACM Press, January 1977. doi: 10.1145/512950.512973. URL

http://doi.acm.org/10.1145/512950.512973.

[11] M. Crampin and F. A. E. Pirani. Applicable Differential Geometry,

chapter 0, pages 5–7. Number 59 in London Mathematical Society

Lecture Note Series. Cambridge University Press, March 1987. doi:

10.2277/0521231906.

[12] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation

of reactive systems. ACM Transactions on Programming Languages and

Systems, 19(2):253–291, March 1997. doi: 10.1145/244795.244800. URL

http://doi.acm.org/10.1145/244795.244800.

[13] Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky. Archi-

tectural mismatch tolerance. In Rogério de Lemos, Cristina Gacek, and

103

http://doi.acm.org/10.1145/242224.242433
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/244795.244800

Alexander Romanovsky, editors, Architecting Dependable Systems, vol-

ume 2677 of Lecture Notes in Computer Science, pages 175–194. Springer-

Verlag, July 2003. ISBN 978-3-540-40727-0. doi: 10.1007/3-540-45177-3

8. URL http://www.springerlink.com/content/x312284r52h5342w.

[14] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1:269–271, June 1959. doi: 10.1007/BF01386390.

[15] William F. Dowling and Jean H. Gallier. Linear-time algorithms for test-

ing the satisfiability of propositional Horn formulae. Journal of Logic

Programming, 1(3):267–284, October 1984.

[16] Marlon Dumas, Murray Spork, and Kenneth Wang. Adapt or perish: Al-

gebra and visual notation for service interface adaptation. In Proceedings

of the 4th International Conference on Business Process Management,

pages 65–80. Springer-Verlag, September 2006. ISBN 978-3-540-38901-9.

doi: 10.1007/11841760 6.

[17] Stuart I. Feldman. Make — a program for maintaining computer pro-

grams. Software Practice and Experience, 9(4):255–265, April 1979. doi:

10.1002/spe.4380090402. URL http://www3.interscience.wiley.com/

journal/113444488/abstract.

[18] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the

ACM, 5(6):345, June 1962. doi: 10.1145/367766.368168. URL http:

//doi.acm.org/10.1145/367766.368168.

[19] Ira R. Forman and Nate Forman. Java Reflection in Action. Manning

Publications, 2004. ISBN 978-1932394184.

[20] I. M. Forsythe, P. Milligan, and P. P. Sage. Probabilistic program anal-

ysis for parallelizing compilers. In Proceedings of the 6th International

104

http://www.springerlink.com/content/x312284r52h5342w
http://www3.interscience.wiley.com/journal/113444488/abstract
http://www3.interscience.wiley.com/journal/113444488/abstract
http://doi.acm.org/10.1145/367766.368168
http://doi.acm.org/10.1145/367766.368168

Conference on High Performance Computing for Computational Science,

pages 610–622. Springer-Verlag, June 2005. doi: 10.1007/11403937 46.

[21] Armando Fox, Brad Johanson Pat Hanrahan, and Terry Winograd. In-

tegrating information appliances into an interactive workspace. IEEE

Computer Graphics and Applications, 20(3):54–65, May 2000. doi:

10.1109/38.844373.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, November 1994. ISBN 0-201-63361-2.

[23] J. Gao, G. Kar, and P. Kemarii. Approaches to building self healing

systems using dependency analysis. In Proceedings of the 2004 IEEE/IFIP

Network Operations and Management Symposium, volume 1, pages 119–

132, April 2004. ISBN 0-7803-8230-7. doi: 10.1109/NOMS.2004.1317649.

[24] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman and Company,

January 1979. ISBN 0-7167-1045-5.

[25] David Garlan, Robert Allen, and John Ockerbloom. Architectural mis-

match: Why reuse is still so hard. IEEE Software, 26(4):66–69, July 2009.

doi: 10.1109/MS.2009.86.

[26] Thomas Gschwind. Type based adaptation: An adaptation approach

for dynamic distributed systems. In Proceedings of the Third Inter-

national Workshop on Software Engineering and Middleware, volume

2596 of Lecture Notes in Computer Science, pages 130–143, May 2002.

ISBN 978-3-540-07549-3. doi: 10.1007/3-540-38093-0 9. URL http:

//www.springerlink.com/content/x4718jhu072m2m37/.

105

http://www.springerlink.com/content/x4718jhu072m2m37/
http://www.springerlink.com/content/x4718jhu072m2m37/

[27] Sven Moritz Hallberg. Eternal compatibility in theory. The

Monad.Reader, 2, May 2005. URL http://www.haskell.org/tmrwiki/

EternalCompatibilityInTheory. No longer online, available from the

Internet Archive Wayback Machine.

[28] Yuan-Shin Hwang, Peng-Sheng Chen, Jenq Kuen Lee, and Roy Dz-Ching

Ju. Probabilistic points-to analysis. In Proceedings of the 14th Inter-

national Workshop on Languages and Compilers for Parallel Computing,

pages 290–305. Springer-Verlag, 2001. doi: 10.1007/3-540-35767-X 19.

[29] Donald B. Johnson. Efficient algorithms for shortest paths in sparse net-

works. Journal of the ACM, 24(1):1–13, January 1977. doi: 10.1145/

321992.321993. URL http://doi.acm.org/10.1145/321992.321993.

[30] N. D. Jones and F. Nielson. Abstract interpretation: A semantics-based

tool for program analysis. In Handbook of Logic in Computer Science,

volume 4, pages 527–636. Oxford University Press, 1995.

[31] Piotr Kaminski, Marin Litoiu, and Hausi Müller. A design technique

for evolving web services. In Proceedings of the 2006 Conference of the

Center for Advanced Studies on Collaborative Research, Toronto, Ontario,

Canada, October 2006. ACM Press. doi: 10.1145/1188966.1188997.

[32] Ralph Keller and Urs Hölzle. Binary component adaptation. In Pro-

ceedings of the 12th European Conference on Object-Oriented Program-

ming, volume 1445 of Lecture Notes on Computer Science, pages 307–

329. Springer-Verlag, July 1998. ISBN 978-3-540-64737-9. doi: 10.1007/

BFb0054097.

[33] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier,

Cristina Videira Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-

oriented programming. In Proceedings of the European Conference on

106

http://www.haskell.org/tmrwiki/EternalCompatibilityInTheory
http://www.haskell.org/tmrwiki/EternalCompatibilityInTheory
http://web.archive.org/web/20051125113502/http://www.haskell.org/tmrwiki/EternalCompatibilityInTheory
http://doi.acm.org/10.1145/321992.321993

Object-Oriented Programming, volume 1241 of Lecture Notes in Computer

Science, pages 220–242. Springer-Verlag, June 1997. ISBN 978-3-540-

63089-0. doi: 10.1007/BFb0053381.

[34] Byoungoh Kim, Kyungmin Lee, and Dongman Lee. An adapter chain-

ing scheme for service continuity in ubiquitous environments with adapter

evaluation. In Proceedings of the Sixth IEEE International Conference on

Pervasive Computing and Communications, pages 537–542. IEEE Com-

puter Society Press, March 2008. doi: 10.1109/PERCOM.2008.70.

[35] Tim Kindberg and Armando Fox. System software for ubiquitous com-

puting. IEEE Pervasive Computing, 1(1):70–81, January 2002.

[36] Andreas Knüpfer and Wolfgang E. Nagel. Construction and compres-

sion of complete call graphs for post-mortem program trace analysis. In

Proceedings of the 2005 International Conference on Parallel Processing,

pages 165–172. IEEE Computer Society Press, June 2005. ISBN 0-7695-

2380-3. doi: 10.1109/ICPP.2005.28.

[37] Woralak Kongdenfha, Hamid Reza Motahari-Nezhad, Boualem Benatal-

lah, Fabio Casati, and Régis Saint-Paul. Mismatch patterns and adapta-

tion aspects: A foundation for rapid development of web service adapters.

IEEE Transactions on Services Computing, 2(2):94–107, April 2009. doi:

10.1109/TSC.2009.12.

[38] Serge Lang. Algebra, volume 211 of Graduate texts in mathematics, page 9.

Springer-Verlag, revised third edition, 2002.

[39] James R. Larus. Abstract execution: A technique for efficiently tracing

programs. Software Practice and Experience, 20(12):1241–1258, December

1990. doi: 10.1002/spe.4380201205.

107

[40] Dongman Lee, Seunghyun Han, Insuk Park, Saehoon Kang, Kyungmin

Lee, Soon J. Hyun, Young-Hee Lee, and Geehyuk Lee. A group-aware

middleware for ubiquitous computing environments. In Proceedings of

the 14th International Conference on Artificial Reality and Telexistence,

pages 291–298, December 2004.

[41] Keunwoo Lee, Anthony LaMarca, and Craig Chambers. HydroJ: Object-

oriented pattern matching for evolvable distributed systems. In Proceed-

ings of the 2003 ACM SIGPLAN Conference on Object-Oriented Program-

ming Systems, Languages & Applications, pages 205–223. ACM Press,

October 2003. ISBN 1-58113-712-5. doi: 10.1145/949305.949324. URL

http://doi.acm.org/10.1145/949305.949324.

[42] Kyungmin Lee, Byoungoh Kim, Yoo Chung, and Dongman Lee. Loss-

minimizing interface adapter chaining. Submitted to the Journal of Sys-

tems and Software, October 2009.

[43] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

The Java Series. Addison-Wesley, 1997. ISBN 0-201-63452-X.

[44] Joseph P. Loyal and Susan A. Mathisen. Using dependence analysis to

support the software maintenance process. In Proceedings of the 1993

Conference on Software Maintenance, pages 282–291, September 1997.

ISBN 0-8186-4600-4. doi: 10.1109/ICSM.1993.366934.

[45] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Pro-

grams. John Wiley & Sons, 2nd edition, July 2006. ISBN 978-0-470-

09355-9.

[46] David Victor Mason. Probabilistic program analysis for software compo-

nent reliability. PhD thesis, University of Waterloo, 2002.

108

http://doi.acm.org/10.1145/949305.949324

[47] Vlada Matena, Sanjeev Krishnan, Linda DeMichiel, and Beth Stearns.

Applying Enterprise JavaBeans: Component-Based Development for the

J2EE Platform. Addison-Wesley, second edition, May 2003. ISBN 0-201-

91466-2.

[48] Bertrand Meyer. Object-Oriented Software Construction, page 342.

Prentice-Hall, 2nd edition, 1997. ISBN 0-13-629155-4.

[49] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes. Information and Computation, 100(1):1–77, September 1992.

doi: 10.1016/0890-5401(92)90008-4.

[50] John C. Mitchell. Foundations for Programming Languages, chapter 5,

pages 308–312. Foundations of Computing. The MIT Press, 1996. ISBN

0-262-13321-0.

[51] Yiannis N. Moschovakis. Notes on Set Theory, chapter 4, page 39.

Springer-Verlag, 1994. ISBN 0-387-94180-0.

[52] Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel Martens, Fran-

cisco Curbera, and Fabio Casati. Semi-automated adaptation of service

interactions. In Proceedings of the 16th International Conference on World

Wide Web, pages 993–1002. ACM Press, May 2007. ISBN 978-1-59593-

654-7. doi: 10.1145/1242572.1242706. URL http://doi.acm.org/10.

1145/1242572.1242706.

[53] Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press, 2003. ISBN 0-521-826144.

URL http://haskell.org/onlinereport/.

[54] Pascal Poizat, Gwen Salaün, and Massimo Tivoli. An adaptation-based

approach to incrementally build component systems. Theoretical Com-

puter Science, 182:155–170, June 2007. doi: 10.1016/j.entcs.2006.09.037.

109

http://doi.acm.org/10.1145/1242572.1242706
http://doi.acm.org/10.1145/1242572.1242706
http://haskell.org/onlinereport/

[55] Shankar R. Ponnekanti and Armando Fox. Application-service inter-

operation without standardized service interfaces. In Proceedings of

the First IEEE International Conference on Pervasive Computing and

Communications. IEEE Computer Society Press, March 2003. doi:

10.1109/PERCOM.2003.1192724.

[56] James M. Purtilo and Joanne M. Atlee. Module reuse by interface adap-

tation. Software Practice and Experience, 21(6):539–556, June 1991. doi:

10.1002/spe.4380210602.

[57] Erhard Rahm and Philip A. Bernstein. A survey of approaches to auto-

matic schema matching. The VLDB Journal, 10(4):334–350, December

2001. doi: 10.1007/s007780100057.

[58] Ralf H. Reussner. Automatic component protocol adaptation with the

CoConut/J tool suite. Future Generation Computer Systems, 19(5):627–

639, July 2003. doi: 10.1016/S0167-739X(02)00173-5.

[59] Tim Rohaly. Report on the fourth Jini community meet-

ing, 2000. URL http://www.javaworld.com/javaworld/javaone00/

j1-00-jinicomm.html. No longer online, available from the Internet

Archive Wayback Machine.

[60] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ran-

ganathan, Roy H. Campbell, and Klara Nahrstedt. A middleware in-

frastructure for active spaces. IEEE Pervasive Computing, 1(4):74–83,

October 2002.

[61] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach, chapter 3, page 75. Prentice-Hall, second edition, 2003. ISBN

0-13-790395-2.

110

http://www.javaworld.com/javaworld/javaone00/j1-00-jinicomm.html
http://www.javaworld.com/javaworld/javaone00/j1-00-jinicomm.html
http://web.archive.org/web/20060509143136/http://www.javaworld.com/javaworld/javaone00/j1-00-jinicomm.html

[62] Barbara G. Ryder. Constructing the call graph of a program. IEEE

Transactions on Software Engineering, 5(3):216–226, May 1979.

[63] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using

dependency models to manage complex software architecture. In Pro-

ceedings of the 2005 ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages & Applications, pages 167–176. ACM

Press, 2005. ISBN 1-59593-031-0. doi: 10.1145/1094811.1094824. URL

http://doi.acm.org/10.1145/1094811.1094824.

[64] SCA. Service component architecture, November 2006. URL https:

//www.ibm.com/developerworks/library/specification/ws-sca/.

[65] Mary Shaw. Architectural issues in software reuse: It’s not just the

functionality, it’s the packaging. ACM SIGSOFT Software Engineer-

ing Notes, 20(SI):3–6, August 1995. doi: 10.1145/223427.211783. URL

http://doi.acm.org/10.1145/223427.211783.

[66] Harald Søndergaard. An application of abstract interpretation of logic

programs: Occur check reduction. In Proceedings of the European Sym-

posium on Programming, pages 327–338. Springer-Verlag, March 1986.

ISBN 978-3-540-16442-5. doi: 10.1007/3-540-16442-1 25.

[67] João Pedro Sousa and David Garlan. Aura: An architectural framework

for user mobility in ubiquitous computing environments. In Proceedings of

the 3rd IEEE/IFIP Conference on Software Architecture: System Design,

Development and Maintenance, pages 29–43, August 2002. ISBN 1-4020-

7176-0.

[68] Bridget Spitznagel and David Garlan. A compositional formalization of

connector wrappers. In Proceedings of the 25th International Conference

on Software Engineering, pages 374–384. IEEE Computer Society Press,

May 2003. ISBN 0-7695-1877-X. doi: 10.1109/ICSE.2003.1201216.

111

http://doi.acm.org/10.1145/1094811.1094824
https://www.ibm.com/developerworks/library/specification/ws-sca/
https://www.ibm.com/developerworks/library/specification/ws-sca/
http://doi.acm.org/10.1145/223427.211783

[69] Gilbert W. Stewart. Matrix Algorithms: Basic Decompositions, chapter 1,

page 46. Society for Industrial and Applied Mathematics, 1998. ISBN

978-0-898714-14-2.

[70] Jeffrey D. Ullman. Elements of ML Programming, pages 50–51. Prentice-

Hall, 1998. ISBN 0-13-080391-X.

[71] Julien Vayssière. Transparent dissemination of adapters in Jini. In Pro-

ceedings of the Third International Symposium on Distributed Objects and

Applications, pages 95–104, September 2001. ISBN 0-7695-1300-X. doi:

10.1109/DOA.2001.954075.

[72] Steve Vinoski. The more things change ... IEEE Internet Computing, 8

(1):87–89, January 2004. doi: 10.1109/MIC.2004.1260709.

[73] Seth Warner. Modern Algebra, chapter 1, pages 29–35. Dover, 1990. ISBN

0-486-66341-8.

[74] Mark Weiser. Some computer science issues in ubiquitous computing.

Communications of the ACM, 36(7):75–84, July 1993. doi: 10.1145/

159544.159617. URL http://doi.acm.org/10.1145/159544.159617.

[75] John Whaley. A portable sampling-based profiler for Java virtual ma-

chines. In Proceedings of the ACM 2000 Java Grande Conference, pages

78–87. ACM Press, June 2000. ISBN 1-58113-288-3.

[76] S. Yacoub, B. Cukic, and H. H. Ammar. A scenario-based reliability

analysis approach for component-based software. IEEE Transactions on

Reliability, 53(4):465–480, December 2004. doi: 10.1109/TR.2004.838034.

[77] Daniel M. Yellin and Robert E. Strom. Protocol specifications and com-

ponent adaptors. ACM Transactions on Programming Languages and

Systems, 19(12):292–333, March 1997. doi: 10.1145/244795.244801. URL

http://doi.acm.org/10.1145/244795.244801.

112

http://doi.acm.org/10.1145/159544.159617
http://doi.acm.org/10.1145/244795.244801

Acknowledgments

I would like to thank my thesis advisor Professor Dongman Lee for his indis-

pensable help with the research that has culminated in this dissertation. He

has helped me through my setbacks and made possible my triumphs during

the years of my doctoral research.

I would also like to express my gratitude to the other members of my thesis

advisory committee: Professor Younghee Lee, Professor Soon Joo Hyun, and

Professor In-Young Ko from KAIST, and Doctor Myung-Joon Kim from ETRI.

They have helped made this dissertation a more valuable work.

I would like to thank all the members of the Collaborative Distributed Sys-

tems and Networks Laboratory at KAIST, with whom there have been many

stimulating discussions. In particular, I would like to thank Byoungoh Kim

and Kyungmin Lee, whose work on interface adaptation became the starting

point of the research that comprised my thesis.

Last but not least, I am eternally grateful to my parents and sister, without

whom I would not be here today.

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Terminology
	Motivation
	Contributions
	Organization

	Related work
	Generating adapters
	Putilo and Atlee
	Reussner
	Benatallah et al.
	Dumas et al.
	Motahari Nezhad et al.
	Kongdenfha et al.

	Formalizing interface adaptation
	Yellin and Strom
	Spitznagel and Garlan
	Bracciali et al.
	Poizat et al.

	Combining adapters
	Keller and Hölzle
	Hallberg
	Kaminski et al.
	Vayssiére
	Gschwind
	Ponnekanti and Fox
	Kim et al.

	Discrete chains
	Mathematical basics
	Method dependencies
	Adapter composition
	An example

	Optimal adapter chaining
	Representing values
	Handling literals
	Handling clauses
	Filtering
	Analysis of the reduction

	A greedy algorithm

	Probabilistic chains
	Mathematical basics
	Method dependencies
	Adapter composition
	An example

	Optimal adapter chaining
	A greedy algorithm

	Abstract interpretation
	Mathematical basics
	Method dependencies
	Adapter composition
	An example

	Complexity
	A greedy algorithm

	Web of interface adapters
	Mathematical basics
	Web of lossy adapters
	An example
	Minimizing number of adapters

	Discussion
	A case study

	Conclusions
	Summary (in Korean)

